toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Mena, O.; Melchiorri, A.; Silk, J. url  doi
openurl 
  Title Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 752 Issue Pages (down) 182-185  
  Keywords  
  Abstract Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterized via N-eff. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measurements. In the mixed hot dark matter scenario explored here, we find the tightest and more robust constraint to date on the sum of the three active neutrino masses, Sigma m nu < 0.136eV at 95% CL, as it is obtained in the very well-known linear perturbation regime. The Planck Sunyaev-Zeldovich cluster number count data further tightens this bound, providing a 95% CL upper limit of Sigma m nu < 0.126 eV in this very same mixed hot dark matter model, a value which is very close to the expectations in the inverted hierarchical neutrino mass scenario. Using this same combination of data sets we find the most stringent bound to date on the thermal axion mass, m(a) < 0.529 eV at 95% CL.  
  Address [Di Valentino, Eleonora; Silk, Joseph] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France, Email: elena.giusarma@roma1.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368026000026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2524  
Permanent link to this record
 

 
Author Salvado, J.; Mena, O.; Palomares-Ruiz, S.; Rius, N. url  doi
openurl 
  Title Non-standard interactions with high-energy atmospheric neutrinos at IceCube Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages (down) 141 - 30pp  
  Keywords Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μtau-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal epsilon(mu tau), with the 90% credible interval given by -6.0 x 10(-3) < epsilon(mu tau) < 5.4 x 10(-3), comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of epsilon(mu tau) near its current bound.  
  Address [Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Aparlado Correos 22085, E-46071 Valencia, Spain, Email: jsalvado@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397645900004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3034  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Gnedin, N.Y.; Mena, O. url  doi
openurl 
  Title Warm Dark Matter and Cosmic Reionization Type Journal Article
  Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 852 Issue 2 Pages (down) 139 - 7pp  
  Keywords cosmology: theory; galaxies: formation; intergalactic medium; large-scale structure of universe; methods: numerical  
  Abstract In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3. keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn-Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn-Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.  
  Address [Villanueva-Domingo, Pablo; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: gnedin@fnal.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000422865600009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3455  
Permanent link to this record
 

 
Author Pompa, F.; Mena, O. url  doi
openurl 
  Title How long do neutrinos live and how much do they weigh? Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 2 Pages (down) 134 - 12pp  
  Keywords  
  Abstract The next-generation water Cherenkov Hyper-Kamiokande detector will be able to detect thousands of neutrino events from a galactic Supernova explosion via Inverse Beta Decay processes followed by neutron capture on Gadolinium. This superb statistics provides a unique window to set bounds on neutrino properties, as its mass and lifetime. We shall explore the capabilities of such a future detector, constraining the former two properties via the time delay and the flux suppression induced in the Supernovae neutrino time and energy spectra. Special attention will be devoted to the statistically sub-dominant elastic scattering induced events, normally neglected, which can substantially improve the neutrino mass bound via time delays. When allowing for a invisible decaying scenario, the 95% CL lower bound on tau/m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau /m$$\end{document} is almost one order of magnitude better than the one found with SN1987A neutrino events. Simultaneous limits can be set on both m nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\nu $$\end{document} and tau nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau {\nu }$$\end{document}, combining the neutrino flux suppression with the time-delay signature: the best constrained lifetime is that of nu 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu 1$$\end{document}, which has the richest electronic component. We find tau nu 1 greater than or similar to 4x105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau {\nu _1}\gtrsim 4\times 10<^>5$$\end{document} s at 95% CL. The tightest 95% CL bound on the neutrino mass we find is 0.34 eV, which is not only competitive with the tightest neutrino mass limits nowadays, but also comparable to future laboratory direct mass searches. Both mass and lifetime limits are independent on the mass ordering, which makes our results very robust and relevant.  
  Address [Pompa, Federica; Mena, Olga] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: federica.pompa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001157038300005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5927  
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O. url  doi
openurl 
  Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring D-A and H at z=0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample Type Journal Article
  Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 439 Issue 1 Pages (down) 83-101  
  Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large scale structure of Universe  
  Abstract We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find D-A(0.57) = 1408 +/- 45 Mpc and H(0.57) = 92.9 +/- 7.8 km s(-1) Mpc(-1) for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.  
  Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333297700026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1738  
Permanent link to this record
 

 
Author Eisenstein, D.J. et al; Mena, O. url  doi
openurl 
  Title SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems Type Journal Article
  Year 2011 Publication Astronomical Journal Abbreviated Journal Astron. J.  
  Volume 142 Issue 3 Pages (down) 72 - 24pp  
  Keywords cosmology: observations; Galaxy: evolution; planets and satellites: detection; surveys  
  Abstract Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Ly alpha forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z approximate to 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = lambda/lambda Delta approximate to 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R approximate to 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 μm < lambda < 1.70 μm) spectra of 105 evolved, late-type stars, measuring separate abundances for similar to 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 ms(-1), similar to 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.  
  Address [Eisenstein, DJ; Fan, XH; Jiang, LH; Maseman, P; McGreer, ID; Rieke, GH; Rieke, MJ; Young, E] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6256 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294669700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 754  
Permanent link to this record
 

 
Author de Salas, P.F.; Forero, D.V.; Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title 2020 global reassessment of the neutrino oscillation picture Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages (down) 071 - 36pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, besides the data considered previously, we give updated analyses of IceCube DeepCore and Sudbury Neutrino Observatory data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NO nu A measurements, as reported in the Neutrino 2020 conference. All in all, these new analyses result in more accurate measurements of theta (13), theta (12), Delta m212 and Delta m312. The best fit value for the atmospheric angle theta (23) lies in the second octant, but first octant solutions remain allowed at similar to 2.4 sigma. Regarding CP violation measurements, the preferred value of delta we obtain is 1.08 pi (1.58 pi) for normal (inverted) neutrino mass ordering. The global analysis still prefers normal neutrino mass ordering with 2.5 sigma statistical significance. This preference is milder than the one found in previous global analyses. These new results should be regarded as robust due to the agreement found between our Bayesian and frequentist approaches. Taking into account only oscillation data, there is a weak/moderate preference for the normal neutrino mass ordering of 2.00 sigma. While adding neutrinoless double beta decay from the latest Gerda, CUORE and KamLAND-Zen results barely modifies this picture, cosmological measurements raise the preference to 2.68 sigma within a conservative approach. A more aggressive data set combination of cosmological observations leads to a similar preference for normal with respect to inverted mass ordering, namely 2.70 sigma. This very same cosmological data set provides 2 sigma upper limits on the total neutrino mass corresponding to Sigma m(nu)< 0.12 (0.15) eV in the normal (inverted) neutrino mass ordering scenario. The bounds on the neutrino mixing parameters and masses presented in this up-to-date global fit analysis include all currently available neutrino physics inputs.  
  Address [de Salas, P. F.] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000618343000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4727  
Permanent link to this record
 

 
Author Mosbech, M.R.; Boehm, C.; Hannestad, S.; Mena, O.; Stadler, J.; Wong, Y.Y.Y. url  doi
openurl 
  Title The full Boltzmann hierarchy for dark matter-massive neutrino interactions Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages (down) 066 - 31pp  
  Keywords cosmological perturbation theory; dark matter theory; neutrino properties; particle physics – cosmology connection  
  Abstract The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via u(chi) = sigma(0)/sigma(Th) (m(chi)/100GeV)(-1), is u(chi) <= 3.34 . 10(-4), arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly higher than previous results for interacting massless neutrinos, due to the correction factor associated with neutrino masses. We find that these interactions significantly relax the lower bounds on the value of sigma 8 that is inferred in the context of Lambda CDM from the Planck data, leading to agreement within 1-2 sigma with weak lensing estimates of sigma 8, as those from KiDS1000. However, the presence of these interactions barely affects the value of the Hubble constant H-0.  
  Address [Mosbech, Markus R.; Boehm, Celine] Univ Sydney, Sch Phys, Camperdown, NSW 2006, Australia, Email: mmos6302@uni.sydney.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636717400061 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4783  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Searching for solar KDAR with DUNE Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages (down) 065 - 28pp  
  Keywords dark matter theory; neutrino detectors  
  Abstract The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.  
  Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000758221400019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5141  
Permanent link to this record
 

 
Author Capozzi, F.; Ferreira, R.Z.; Lopez-Honorez, L.; Mena, O. url  doi
openurl 
  Title CMB and Lyman-alpha constraints on dark matter decays to photons Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages (down) 060 - 23pp  
  Keywords reionization; axions; cosmological parameters from CMBR; dark matter theory  
  Abstract Dark matter energy injection in the early universe modifies both the ionization history and the temperature of the intergalactic medium. In this work, we improve the CMB bounds on sub-keV dark matter and extend previous bounds from Lyman-& alpha; observations to the same mass range, resulting in new and competitive constraints on axion-like particles (ALPs) decaying into two photons. The limits depend on the underlying reionization history, here accounted self-consistently by our modified version of the publicly available DarkHistory and CLASS codes. Future measurements such as the ones from the CMB-S4 experiment may play a crucial, leading role in the search for this type of light dark matter candidates.  
  Address [Capozzi, Francesco] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy, Email: francesco.capozzi@univaq.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001025410500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5584  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva