toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Izadi, A.; Shacker, S.S.; Olmo, G.J.; Banerjee, R. url  doi
openurl 
  Title Observational effects of varying speed of light in quadratic gravity cosmological models Type Journal Article
  Year 2018 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 15 Issue 5 Pages (down) 1850084 - 16pp  
  Keywords Palatini formalism; modified gravity; causal structure constant; varying speed of light  
  Abstract We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (c(ST)) may become variable in that local frame. For theories of the form f(R, R-mu nu R-mu nu), this variation in c(ST) has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.  
  Address [Izadi, Azam] Khajeh Nasir Toosi Univ Technol, Dept Phys, Tehran, Iran, Email: aizadi@kntu.ac.ir;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429106400016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3553  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title The quantum, the geon and the crystal Type Journal Article
  Year 2015 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 24 Issue 9 Pages (down) 1542013 - 15pp  
  Keywords Effective geometries; crystalline structures; modified gravity; metric-affine approach; geons  
  Abstract Effective geometries arising from a hypothetical discrete structure of spacetime can play an important role in the understanding of the gravitational physics beyond General Relativity (GR). To discuss this question, we make use of lessons from crystalline systems within solid state physics, where the presence of defects in the discrete microstructure of the crystal determine the kind of effective geometry needed to properly describe the system in the macroscopic continuum limit. In this work, we study metric-affine theories with nonmetricity and torsion, which are the gravitational analog of crystalline structures with point defects and dislocations. We consider a crystal-motivated gravitational action and show the presence of topologically nontrivial structures (wormholes) supported by an electromagnetic field. Their existence has important implications for the quantum foam picture and the effective gravitational geometries. We discuss how the dialogue between solid state physics systems and modified gravitational theories can provide useful insights on both sides.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Fac Fis, Dept Fis Teor, E-46100 Valencia, Spain, Email: drubiera@fudan.edu.cn  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358793200014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2322  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J.; Vignolo, S. url  doi
openurl 
  Title The Cauchy problem in hybrid metric-Palatini f(X)-gravity Type Journal Article
  Year 2014 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 11 Issue 5 Pages (down) 1450042 - 12pp  
  Keywords Cauchy problem; modified gravity; hybrid metric-Palatini gravity  
  Abstract The well-formulation and the well-posedness of the Cauchy problem are discussed for hybrid metric-Palatini gravity, a recently proposed modified gravitational theory consisting of adding to the Einstein-Hilbert Lagrangian an f(R)-term constructed a la Palatini. The theory can be recast as a scalar-tensor one predicting the existence of a light long-range scalar field that evades the local Solar System tests and is able to modify galactic and cosmological dynamics, leading to the late-time cosmic acceleration. In this work, adopting generalized harmonic coordinates, we show that the initial value problem can always be well-formulated and, furthermore, can be well-posed depending on the adopted matter sources.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000336527100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1813  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Hybrid Modified Gravity Unifying Local Tests, Galactic Dynamics and Late-Time Cosmic Acceleration Type Journal Article
  Year 2013 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 22 Issue 12 Pages (down) 1342006 - 7pp  
  Keywords Modified gravity; late-time cosmic acceleration; dark matter; solar system tests  
  Abstract The nonequivalence between the metric and Palatini formalisms of f(R) gravity is an intriguing feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini, the “true” gravitational field is described by the interpolation of these two nonequivalent approaches. The theory predicts the existence of a light long-range scalar field, which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the theory opens new possibilities for a unified approach, in the same theoretical framework, to the problems of dark energy and dark matter, without distinguishing a priori matter and geometric sources, but taking their dynamics into account under the same standard.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329048900013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1688  
Permanent link to this record
 

 
Author Alfonso, V.I.; Bejarano, C.; Beltran Jimenez, J.; Olmo, G.J.; Orazi, E. url  doi
openurl 
  Title The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields Type Journal Article
  Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 34 Issue 23 Pages (down) 235003 - 20pp  
  Keywords modified gravity; metric-affine theories; torsion; non-minimal couplings  
  Abstract We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.  
  Address [Alfonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414726500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3353  
Permanent link to this record
 

 
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J. url  doi
openurl 
  Title Boson stars in Palatini f(R) gravity Type Journal Article
  Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 38 Issue 19 Pages (down) 194003 - 25pp  
  Keywords boson stars; Palatini formalism; modified gravity  
  Abstract We explore equilibrium solutions of spherically symmetric boson stars in the Palatini formulation of f (R) gravity. We account for the modifications introduced in the gravitational sector by using a recently established correspondence between modified gravity with scalar matter and general relativity with modified scalar matter. We focus on the quadratic theory f (R) = R + xi R-2 and compare its solutions with those found in general relativity, exploring both positive and negative values of the coupling parameter xi. As matter source, a complex, massive scalar field with and without self-interaction terms is considered. Our results show that the existence curves of boson stars in Palatini f (R) gravity are fairly similar to those found in general relativity. Major differences are observed for negative values of the coupling parameter which results in a repulsive gravitational component for high enough scalar field density distributions. Adding self-interactions makes the degeneracy between f (R) and general relativity even more pronounced, leaving very little room for observational discrimination between the two theories.  
  Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, Valencia 46100, Spain, Email: andreu.maso@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000695280300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4964  
Permanent link to this record
 

 
Author Guendelman, E.I.; Olmo, G.J.; Rubiera-Garcia, D.; Vasihoun, M. url  doi
openurl 
  Title Nonsingular electrovacuum solutions with dynamically generated cosmological constant Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 726 Issue 4-5 Pages (down) 870-875  
  Keywords Modified gravity; Palatini formalism; Nonlinear electrodynamics; Dynamical cosmological constant; Nonsingular solutions; Wormholes  
  Abstract We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.  
  Address [Guendelman, E. I.; Vasihoun, M.] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel, Email: guendel@bgumail.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327907000045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1680  
Permanent link to this record
 

 
Author Olmo, G.J. url  doi
openurl 
  Title Palatini approach to modified gravity: f(R) theories and beyond Type Journal Article
  Year 2011 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 20 Issue 4 Pages (down) 413-462  
  Keywords Palatini formalism; modified gravity; cosmic speed-up; dark energy; dark matter; MOND; quantum gravity phenomenology; Hamiltonian formulation; stellar structure; Cauchy problem; solar system tests  
  Abstract We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.  
  Address [Olmo, Gonzalo J.] Univ Valencia CSIC, Dept Fis Teor, Valencia, Spain, Email: gonzalo.olmo@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000290228200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 961  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Planck scale physics and topology change through an exactly solvable model Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 731 Issue Pages (down) 163-167  
  Keywords Modified gravity; Palatini formalism; Planck scale physics; Dynamical Vaidya solutions; Topology change  
  Abstract We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated A la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space-time and the meaning of curvature divergences in this theory.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334094500028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1757  
Permanent link to this record
 

 
Author Alencar, G.; Estrada, M.; Muniz, C.R.; Olmo, G.J. url  doi
openurl 
  Title Dymnikova GUP-corrected black holes Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages (down) 100 - 23pp  
  Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; GR black holes; modified gravity; quantum black holes  
  Abstract We consider the impact of Generalized Uncertainty Principle (GUP) effects on the Dymnikova regular black hole. The minimum length scale introduced by the GUP modifies the energy density associated with the gravitational source, referred to as the Dymnikova vacuum, based on its analogy with the gravitational counterpart of the Schwinger effect. We present an approximated analytical solution (together with exact numerical results for comparison) that encompasses a wide range of black hole sizes, whose properties crucially depend on the ratio between the de Sitter core radius and the GUP scale. The emergence of a wormhole inside the de Sitter core in the innermost region of the object is one of the most relevant features of this family of solutions. Our findings demonstrate that these solutions remain singularity free, confirming the robustness of the Dymnikova regular black hole under GUP corrections. Regarding energy conditions, we find that the violation of the strong, weak, and null energy conditions which is characteristic of the pure Dymnikova case does not occur at Planckian scales in the GUP corrected solution. This contrast suggests a departure from conventional expectations and highlights the influence of quantum corrections and the GUP in modifying the energy conditions near the Planck scale.  
  Address [Alencar, G.; Olmo, Gonzalo J.] Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil, Email: geova@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001121623400017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5868  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva