toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J. doi  openurl
  Title On the Magnetic Field of a Finite Solenoid Type Journal Article
  Year 2023 Publication IEEE Transactions on Magnetics Abbreviated Journal IEEE Trans. Magn.  
  Volume 59 Issue 4 Pages (down) 7000106 - 6pp  
  Keywords Solenoids; Magnetic fields; Integral equations; Magnetostatics; Magnetostatic waves; Particle beams; NASA; Elliptic integrals; finite solenoid; magnetostatics  
  Abstract The magnetostatic field of a finite solenoid with infinitely thin walls carrying a dc current oriented in the azimuthal direction is calculated everywhere in space in terms of complete elliptic integrals by direct integration of the Biot-Savart law. The solution is particularized near the solenoid axis and in the midplane perpendicular to the axis obtaining expressions that agree with some typical approximations that are made in introductory courses of electromagnetism or in the technical literature. The range of validity of these approximations has been studied comparing them with the obtained general expression.  
  Address [Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.] Univ Valencia, Inst Corpuscular Phys IFIC, CSIC, Paterna 46980, Spain, Email: Pablo.Martin@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9464 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001006992700005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5552  
Permanent link to this record
 

 
Author Ahyoune, S. et al; Gimeno, B.; Reina-Valero, J. url  doi
openurl 
  Title A Proposal for a Low-Frequency Axion Search in the 1-2 μeV Range and Below with the BabyIAXO Magnet Type Journal Article
  Year 2023 Publication Annalen der Physik Abbreviated Journal Ann. Phys.  
  Volume 535 Issue 12 Pages (down) 2300326 - 23pp  
  Keywords axions; dark matter; dark photons; haloscopes; IAXO  
  Abstract In the near future BabyIAXO will be the most powerful axion helioscope, relying on a custom-made magnet of two bores of 70 cm diameter and 10 m long, with a total available magnetic volume of more than 7 m(3). In this document, it proposes and describe the implementation of low-frequency axion haloscope setups suitable for operation inside the BabyIAXO magnet. The RADES proposal has a potential sensitivity to the axion-photon coupling g(alpha gamma) down to values corresponding to the KSVZ model, in the (currently unexplored) mass range between 1 and 2 μeV, after a total effective exposure of 440 days. This mass range is covered by the use of four differently dimensioned 5-meter-long cavities, equipped with a tuning mechanism based on inner turning plates. A setup like the one proposed will also allow an exploration of the same mass range for hidden photons coupled to photons. An additional complementary apparatus is proposed using LC circuits and exploring the low energy range (approximate to 10(-4)-10(-1)mu eV). The setup includes a cryostat and cooling system to cool down the BabyIAXO bore down to about 5 K, as well as an appropriate low-noise signal amplification and detection chain.  
  Address [Ahyoune, Saiyd; Cuendis, Sergio Arguedas; Miralda-Escude, Jordi] Univ Barcelona, Inst Ciencies Cosmos, Barcelona 08028, Spain, Email: cogollos@mpp.mpg.de  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3804 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001095932700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5833  
Permanent link to this record
 

 
Author Olivares Herrador, J.; Latina, A.; Aksoy, A.; Fuster Martinez, N.; Gimeno, B.; Esperante, D. doi  openurl
  Title Implementation of the beam-loading effect in the tracking code RF-track based on a power-diffusive model Type Journal Article
  Year 2024 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 12 Issue Pages (down) 1348042 - 11pp  
  Keywords beam loading; LINAC; energy loss; tracking simulation; transient; high-intensity beam; CLEAR; gradient reduction  
  Abstract The need to achieve high energies in particle accelerators has led to the development of new accelerator technologies, resulting in higher beam intensities and more compact devices with stronger accelerating fields. In such scenarios, beam-loading effects occur, and intensity-dependent gradient reduction affects the accelerated beam as a consequence of its interaction with the surrounding cavity. In this study, a power-diffusive partial differential equation is derived to account for this effect. Its numerical resolution has been implemented in the tracking code RF-Track, allowing the simulation of apparatuses where transient beam loading plays an important role. Finally, measurements of this effect have been carried out in the CERN Linear Electron Accelerator for Research (CLEAR) facility at CERN, finding good agreement with the RF-Track simulations.  
  Address [Olivares Herrador, Javier; Latina, Andrea; Aksoy, Avni] CERN, Meyrin, Switzerland, Email: javier.olivares.herrador@cern.ch  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001193122800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6019  
Permanent link to this record
 

 
Author Martinez-Reviriego, P.; Esperante, D.; Grudiev, A.; Gimeno, B.; Blanch, C.; Gonzalez-Iglesias, D.; Fuster-Martinez, N.; Martin-Luna, P.; Martinez, E.; Menendez, A.; Fuster, J. url  doi
openurl 
  Title Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments Type Journal Article
  Year 2024 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 12 Issue Pages (down) 1345237 - 12pp  
  Keywords dielectric assist accelerating (DAA) structures; radio frequency (RF); LINAC; hadrontherapy; standing wave  
  Abstract Dielectric Assist Accelerating (DAA) structures based on ultralow-loss ceramic are being studied as an alternative to conventional disk-loaded copper cavities. This accelerating structure consists of dielectric disks with irises arranged periodically in metallic structures working under the TM02-pi mode. In this paper, the numerical design of an S-band DAA structure for low beta particles, such as protons or carbon ions used for Hadrontherapy treatments, is shown. Four dielectric materials with different permittivity and loss tangent are studied as well as different particle velocities. Through optimization, a design that concentrates most of the RF power in the vacuum space near the beam axis is obtained, leading to a significant reduction of power loss on the metallic walls. This allows to fabricate cavities with an extremely high quality factor, over 100,000, and shunt impedance over 300 M omega/m at room temperature. During the numerical study, the design optimization has been improved by adjusting some of the cell parameters in order to both increase the shunt impedance and reduce the peak electric field in certain locations of the cavity, which can lead to instabilities in its normal functioning.  
  Address [Martinez-Reviriego, Pablo; Esperante, Daniel; Gimeno, Benito; Blanch, Cesar; Gonzalez-Iglesias, Daniel; Fuster-Martinez, Nuria; Martin-Luna, Pablo; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.martinez.reviriego@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001162373700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5953  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Aksoy, A.; Esperante, D.; Gimeno, B.; Latina, A.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J. doi  openurl
  Title X-band RF photoinjector design for the CompactLight project Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1014 Issue Pages (down) 165709 - 10pp  
  Keywords Photoinjector; X-band; Electron sources; Free electron laser; Beam generation  
  Abstract RF photoinjectors have been under development for several decades to provide the high-brightness electron beams required for X-ray Free Electron Lasers. This paper proposes a photoinjector design that meets the Horizon 2020 CompactLight design study requirements. It consists of a 5.6-cell, X-band (12 GHz) RF gun, an emittance-compensating solenoid and two X-band traveling-wave structures that accelerate the beam out of the space-charge-dominated regime. The RF gun is intended to operate with a cathode gradient of 200 MV/m, and the TW structures at a gradient of 65 MV/m. The shape of the gun cavity cells was optimized to reduce the peak electric surface field. An assessment of the gun RF breakdown likelihood is presented as is a multipacting analysis for the gun coaxial coupler. RF pulse heating on the gun inner surfaces is also evaluated and beam dynamics simulations of the 100 MeV photoinjector are summarized.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704382900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4983  
Permanent link to this record
 

 
Author Martin-Luna, P.; Esperante, D.; Prieto, A.F.; Fuster-Martinez, N.; Rivas, I.G.; Gimeno, B.; Ginestar, D.; Gonzalez-Iglesias, D.; Hueso, J.L.; Llosa, G.; Martinez-Reviriego, P.; Meneses-Felipe, A.; Riera, J.; Regueiro, P.V.; Hueso-Gonzalez, F. doi  openurl
  Title Simulation of electron transport and secondary emission in a photomultiplier tube and validation Type Journal Article
  Year 2024 Publication Sensors and Actuators A-Physical Abbreviated Journal Sens. Actuator A-Phys.  
  Volume 365 Issue Pages (down) 114859 - 10pp  
  Keywords Photomultiplier tube; Photodetector; Proton therapy; Monte Carlo simulation; Measurement  
  Abstract The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.  
  Address [Martin-Luna, Pablo; Esperante, Daniel; Fuster-Martinez, Nuria; Gimeno, Benito; Gonzalez-Iglesias, Daniel; Llosa, Gabriela; Martinez-Reviriego, Pablo; Meneses-Felipe, Alba; Hueso-Gonzalez, Fernando] CSIC UV, Inst Fis Corpuscular IFIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: pablo.martin@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131902700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5876  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Gimeno, B.; Esperante, D.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster-Martinez, N.; Blanch, C.; Martinez, E.; Menendez, A.; Fuster, J.; Grudiev, A. url  doi
openurl 
  Title Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures Type Journal Article
  Year 2024 Publication Results in Physics Abbreviated Journal Results Phys.  
  Volume 56 Issue Pages (down) 107245 - 12pp  
  Keywords Multipactor; Dielectric accelerating structures; RF particle accelerators; Plasma discharge  
  Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.  
  Address [Gonzalez-Iglesias, Daniel; Gimeno, Benito; Esperante, Daniel; Martinez-Reviriego, Pablo; Martin-Luna, Pablo; Fuster-Martinez, Nuria; Blanch, Cesar; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC UV, Inst Fis Corpuscular IF, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001133850600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5866  
Permanent link to this record
 

 
Author Navarro, P.; Gimeno, B.; Alvarez Melcon, A.; Arguedas Cuendis, S.; Cogollos, C.; Diaz-Morcillo, A.; Gallego, J.D.; Garcia Barcelo, J.M.; Golm, J.; Irastorza, I.G.; Lozano Guerrero, A.J.; Garay, C.P. url  doi
openurl 
  Title Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators Type Journal Article
  Year 2022 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 36 Issue Pages (down) 101001 - 14pp  
  Keywords Axion detection; Axion field; Axion-photon interaction; BI-RME 3D; Broad-band analysis; Dark matter; Full wave analysis; Haloscope; Microwave resonator; Modal technique  
  Abstract The electromagnetic coupling axion-photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion-photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green's functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy-Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.  
  Address [Navarro, P.; Melcon, A. alvarez; Diaz-Morcillo, A.; Barcelo, J. M. Garcia; Guerrero, A. J. Lozano] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: pablonm.ct.94@gmail.com;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791333100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5218  
Permanent link to this record
 

 
Author Vnuchenko, A.; Esperante Pereira, D.; Gimeno, B.; Benedetti, S.; Catalan Lasheras, N.; Garlasch, M.; Grudiev, A.; McMonagle, G.; Pitman, S.; Syratchev, I.; Timmins, M.; Wegner, R.; Woolley, B.; Wuensch, W.; Faus-Golfe, A. doi  openurl
  Title High-gradient testing of an S-band, normal-conducting low phase velocity accelerating structure Type Journal Article
  Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 23 Issue 8 Pages (down) 084801 - 13pp  
  Keywords  
  Abstract A novel high-gradient accelerating structure with low phase velocity, v/c = 0.38, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC 100 MV/m high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward traveling wave (BTW) with a phase advance of 150 degrees and has an active length of 19 cm. The main objective for designing and testing this structure was to demonstrate that low velocity particles, in particular protons, can be accelerated with high gradients. In addition, the performance of this structure compared to other type of structures provides insights into the factors that limit high gradient operation. The structure was conditioned successfully to high gradient using the same protocol as for CLIC X-band structures. However, after the high power test, data analysis realized that the structure had been installed backwards, that is, the input power had been fed into what is nominally the output end of the structure. This resulted in higher peak fields at the power feed end and a steeply decreasing field profile along the structure, rather than the intended near constant field and gradient profile. A local accelerating gradient of 81 MV/m near the input end was achieved at a pulse length of 1.2 μs and with a breakdown rate (BDR) of 7.2 x 10(-7) 1 /pulse/m. The reverse configuration was accidental but the operating with this field condition gave very important insights into high-gradient behaviour and a comprehensive analysis has been carried out. A particular attention was paid to the characterization of the distribution of BD positions along the structure and within a cell.  
  Address [Vnuchenko, A.; Esperante Pereira, D.; Gimeno Martinez, B.] Inst Fsica Corpuscular IFIC, Valencia 46980, Spain, Email: anna.vnuchenko@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000582958800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4584  
Permanent link to this record
 

 
Author Garcfa-Barcelo, J.M.; Melcon, A.A.; Cuendis, S.A.; Diaz-Morcillo, A.; Gimeno, B.; Kanareykin, A.; Lozano-Guerrero, A.J.; Navarro, P.; Wuensch, W. url  doi
openurl 
  Title On the Development of New Tuning and Inter-Coupling Techniques Using Ferroelectric Materials in the Detection of Dark Matter Axions Type Journal Article
  Year 2023 Publication IEEE Access Abbreviated Journal IEEE Access  
  Volume 11 Issue Pages (down) 30360-30372  
  Keywords Tuning; Couplings; Permittivity; Dark matter; Magnetic resonance; Cryogenics; Receivers; Ferroelectrics; Microwave devices; Axion detection; axion-photon interaction; dark matter; ferroelectrics; haloscope; KTO; microwave resonator; STO; tuning  
  Abstract Tuning is an essential requirement for the search of dark matter axions employing haloscopes since its mass is not known yet to the scientific community. At the present day, most haloscope tuning systems are based on mechanical devices which can lead to failures due to the complexity of the environment in which they are used. However, the electronic tuning making use of ferroelectric materials can provide a path that is less vulnerable to mechanical failures and thus complements and expands current tuning systems. In this work, we present and design a novel technique for using the ferroelectric Potassium Tantalate (KTaO3 or KTO) material as a tuning element in haloscopes based on coupled microwave cavities. In this line, the structures used in the Relic Axion Detector Exploratory Setup (RADES) group are based on several cavities that are connected by metallic irises, which act as interresonator coupling elements. In this article, we also show how to use these KTaO3 films as interresonator couplings between cavities, instead of inductive or capacitive metallic windows used in the past. These two techniques represent a crucial upgrade over the current systems employed in the dark matter axions community, achieving a tuning range of 2.23% which represents a major improvement as compared to previous works (<0.1%) for the same class of tuning systems. The theoretical and simulated results shown in this work demonstrate the interest of the novel techniques proposed for the incorporation of this kind of ferroelectric media in multicavity resonant haloscopes in the search for dark matter axions.  
  Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: josemaria.garcia@upct.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000966674500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5513  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva