Estevez, E. et al, Algora, A., Rubio, B., Bernabeu, J., Nacher, E., Tain, J. L., et al. (2011). beta-decay study of (150)Er, (152)Yb, and (156)Yb: Candidates for a monoenergetic neutrino beam facility. Phys. Rev. C, 84(3), 034304–6pp.
Abstract: The beta decays of (150)Er, (152)Yb, and (156)Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied the EC decay proceeds mainly to a single state in the daughter nucleus.
|
IDS Collaboration(Yue, Z. et al), Algora, A., & Nacher, E. (2024). Charge radii of thallium isotopes near the N=126 shell closure. Phys. Rev. C, 110(3), 034315–9pp.
Abstract: The changes in the mean-squared charge radius of Tl-209(g )(N=128) and Tl-207(m) (N=126) relative to Tl-205 have been measured for the first time using the in-source laser resonance-ionization spectroscopy technique with the Laser Ion Source and Trap (LIST) at ISOLDE (CERN). The application of the LIST suppresses the dominant background from isobaric francium isotopes and allows access to thallium nuclides with A >= 207. The characteristic kink in the charge radii at the N=126 neutron shell closure, as well as the odd-even effect similar to that in the adjacent bismuth, lead, and mercury isotopic chains, have been observed. The self-consistent theory of finite Fermi systems based on the energy density functional by Fayans et al. reproduces the behavior of charge radii in these isotopic chains near N=126. The comparison with calculations in the framework of the relativistic mean field (RMF) approach is also presented. In the case of the Fayans functional it is a specific form of pairing interaction with the dependence on the density gradient that is essential to provide agreement with the experimental charge radii. In particular, the kink is reproduced without the inversion of g(9/2) and i(11/2) neutron single-particle states, which is a prerequisite to correctly describe the kink in the RMF models.
|
Guadilla, V. et al, Algora, A., Tain, J. L., Agramunt, J., Aysto, J., Jordan, D., et al. (2019). Large Impact of the Decay of Niobium Isomers on the Reactor (v)over-bar(e) Summation Calculations. Phys. Rev. Lett., 122(4), 042502–6pp.
Abstract: Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.
|
Guadilla, V. et al, Tain, J. L., Algora, A., Agramunt, J., Jordan, D., Monserrate, M., et al. (2019). Total absorption gamma-ray spectroscopy of the beta-delayed neutron emitters I-137 and Rb-95. Phys. Rev. C, 100(4), 044305–17pp.
Abstract: The decays of the beta-delayed neutron emitters( 137)I and Rb-95 have been studied with the total absorption gamma-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption gamma-ray spectrometer, a segmented detector composed of 18 NaI(T1) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt gamma rays and delayed neutron interactions to eliminate this source of contamination. Due to the sensitivity of our spectrometer, we have found a significant amount of beta intensity to states above the neutron separation energy that deexcite by gamma rays, comparable to the neutron emission probability. The competition between gamma deexcitation and neutron emission has been compared with Hauser-Feshbach calculations, and it can be understood as a nuclear structure effect. In addition, we have studied the impact of the beta-intensity distributions determined in this work on reactor decay heat and reactor antineutrino spectrum summation calculations. The robustness of our results is demonstrated by a thorough study of uncertainties and with the reproduction of the spectra of the individual modules and the module-multiplicity gated spectra. This work represents the state-of-the-art of our analysis methodology for segmented total absorption spectrometers.
|
IDS Collaboration(Piersa-Silkowska, M. et al), & Nacher, E. (2021). First beta-decay spectroscopy of In-135 and new beta-decay branches of In-134. Phys. Rev. C, 101(4), 044328–19pp.
Abstract: The beta decay of the neutron-rich In-134 and In-135 was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number Z = 50 above the N = 82 shell. The beta-delayed gamma-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three beta-decay branches of In-134 were established, two of which were observed for the first time. Population of neutron-unbound states decaying via gamma rays was identified in the two daughter nuclei of In-134, Sn-134 and Sn-133, at excitation energies exceeding the neutron separation energy by 1 MeV. The beta-delayed one-and two-neutron emission branching ratios of In-134 were determined and compared with theoretical calculations. The beta-delayed one-neutron decay was observed to be dominant beta-decay branch of In-134 even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of Sn-134. Transitions following the beta decay of In-135 are reported for the first time, including gamma rays tentatively attributed to Sn-135. In total, six new levels were identified in Sn-134 on the basis of the beta gamma gamma coincidences observed in the In-134 and In-135 beta decays. A transition that might be a candidate for deexciting the missing neutron single-particle 13/2(+) state in Sn-133 was observed in both beta decays and its assignment is discussed. Experimental level schemes of Sn-134 and Sn-135 are compared with shell-model predictions. Using the fast timing technique, half-lives of the 2(+), 4(+), and 6(+) levels in Sn-134 were determined. From the lifetime of the 4(+) state measured for the first time, an unexpectedly large B(E2; 4(+) -> 2(+)) transition strength was deduced, which is not reproduced by the shell-model calculations.
|
Kuhn, K. et al, & Nacher, E. (2021). Experimental study of the nature of the 1(-) and 2(-) excited excited states in Be-10 using the Be-11(p, d) reaction in inverse kinematics. Phys. Rev. C, 104(4), 044601–10pp.
Abstract: The nature of the 1(-) and 2(-) excited states in Be-10 is studied using the Be-11(p, d) transfer reaction in inverse kinematics at 10A MeV at TRIUMF ISAC-II, in particular to assess whether either of them can be considered as an excited halo state. The angular distributions for both states are extracted using deuteron-gamma( )coincidences and analyzed using a transfer model taking into account one-step and two-step processes. A good fit of the angular distributions is obtained considering only the one-step process, whereby an inner p(3/2) neutron of Be-11 is removed, leaving the halo neutron intact. Higher-order processes however cannot be rejected. The small spectroscopic factors extracted suggest that the structure of both states is not uniquely halo-like, but rather display a more complex configuration mixing cluster and halo structures. Further insights are limited, as this experiment specifically probed the halo-like (but not cluster-like) Be-11 (1/2(+)) circle times (nu p(3/2))(-1) configuration in both states.
|
IDS Collaboration(Lica, R. et al), Algora, A., & Nacher, E. (2025). Revealing the Nature of yrast States in Neutron-Rich Polonium Isotopes. Phys. Rev. Lett., 134(5), 052502–7pp.
Abstract: Polonium isotopes having two protons above the shell closure at Z = 82 show a wide variety of lowlying, high-spin isomeric states across the whole chain. The structure of neutron-deficient isotopes up to 210Po (N = 126) is well established as they are easily produced through various methods. However, there is not much information available for the neutron-rich counterparts for which only selective techniques can be used for their production. We report on the first fast-timing measurements of yrast states up to the 8+ level in 214,216,218Po isotopes produced in the beta- decay of 214,216,218Bi at ISOLDE, CERN. In particular, our new half-life value of 607(14) ps for the 8+1 state in 214Po is nearly 20 times shorter than the value available in the literature and comparable with the newly measured half-lives of 409(16) and 628(25) ps for the corresponding 8+1 states in 216,218Po, respectively. The measured B(E2; 8+1 -> 6+1 ) transition probability values follow an increasing trend relative to isotope mass, reaching a maximum for 216Po. The increase contradicts the previous claims of isomerism for the 8+ yrast states in neutron-rich 214Po and beyond. Together with the other measured yrast transitions, the B(E2) values provide a crucial test of the different theoretical approaches describing the underlying configurations of the yrast band. The new experimental results are compared to shell-model calculations using the KHPE and H 208 effective interactions and their pairing-modified versions, showing an increase in configuration mixing when moving toward the heavier isotopes.
|
IDS Collaboration(Andel, B. et al), Algora, A., & Nacher, E. (2021). New beta-decaying state in Bi-214. Phys. Rev. C, 104(5), 054301–13pp.
Abstract: A new beta-decaying state in Bi-214 has been identified at the ISOLDE Decay Station at the CERN-ISOLDE facility. A preferred I-pi = (8(-)) assignment was suggested for this state based on the beta-decay feeding pattern to levels in Po-214 and shell-model calculations. The half-life of the I-pi = (8) state was deduced to be T-1/2 = 9.39(10) min. The deexcitation of the levels populated in Po-214 by the beta decay of this state was investigated via gamma-gamma coincidences and a number of new levels and transitions was identified. Shell-model calculations for excited states in Bi-214 and Po-214 were performed using two different effective interactions: the H208 and the modified Kuo-Herling particle interaction. Both calculations agree on the interpretation of the new beta-decaying state as an I-pi = 8 – isomer and allow for tentative assignment of shell-model states to several high-spin states in Po-214.
|
Perez-Cerdan, A. B., Rubio, B., Gelletly, W., Algora, A., Agramunt, J., Burkard, K., et al. (2011). beta decay of (78)Sr. Phys. Rev. C, 84(5), 054311–15pp.
Abstract: The gamma rays and conversion electrons emitted in the beta decay of (78)Sr to levels in (78)Rb have been studied using Ge detectors and a mini-orange spectrometer. A reliable level scheme based on the results of these experiments has been established. The properties of the levels in (78)Rb have been compared with calculations based on deformed Hartree-Fock with Skyrme interactions and pairing correlations in the BCS approximation. This has allowed an interpretation of the nature of the observed sets of levels in the odd-odd nucleus (78)Rb.
|
Briz, J. A., Nacher, E., Borge, M. J. G., Algora, A., Rubio, B., Dessagne, P., et al. (2015). Shape study of the N = Z nucleus Kr-72 via beta decay. Phys. Rev. C, 92(5), 054326–10pp.
Abstract: The beta decay of the N = Z nucleus Kr-72 has been studied with the total absorption spectroscopy technique at ISOLDE (CERN). A total B(GT) = 0.79(4)g(A)(2)/4 pi has been found up to an excitation energy of 2.7 MeV. The B(GT) distribution obtained is compared with predictions from state-of-the-art theoretical calculations to learn about the ground state deformation of Kr-72. Although a dominant oblate deformation is suggested by direct comparison with quasiparticle random phase approximation (QRPA) calculations, beyond-mean-field and shell-model calculations favor a large oblate-prolate mixing in the ground state.
|