toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barenboim, G.; Masud, M.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Exploring the intrinsic Lorentz-violating parameters at DUNE Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 788 Issue Pages 308-315  
  Keywords  
  Abstract Neutrinos can push our search for new physics to a whole new level. What makes them so hard to be detected, what allows them to travel humongous distances without being stopped or deflected allows to amplify Planck suppressed effects (or effects of comparable size) to a level that we can measure or bound in DUNE. In this work we analyze the sensitivity of DUNE to CPT and Lorentz-violating interactions in a framework that allows a straightforward extrapolation of the bounds obtained to any phenomenological modification of the dispersion relation of neutrinos.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455364400041 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3878  
Permanent link to this record
 

 
Author ANTARES, IceCube, LIGO and Virgo Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube Type Journal Article
  Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 870 Issue 2 Pages 134 - 16pp  
  Keywords gravitational waves; neutrinos  
  Abstract Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.; Maris, I. C.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456063900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3883  
Permanent link to this record
 

 
Author Masud, M.; Bishai, M.; Mehta, P. url  doi
openurl 
  Title Extricating New Physics Scenarios at DUNE with Higher Energy Beams Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue Pages 352 - 9pp  
  Keywords  
  Abstract The proposed Deep Underground Neutrino Experiment (DUNE) utilizes a wide-band on-axis tunable muon-(anti) neutrino beam with a baseline of 1300 km to search for CP violation with high precision. Given the long baseline, DUNE is also sensitive to effects due to matter induced non-standard neutrino interactions (NSI) which can interfere with the standard three-flavor oscillation paradigm. Hence it is desirable to design strategies to disentangle effects due to NSI from standard oscillations. In this article, we exploit the tunability of the DUNE neutrino beam over a wide-range of energies to devise an experimental strategy for separating oscillation effects due to NSI from the standard three-flavor oscillation scenario. Using chi(2) analysis, we obtain an optimal combination of beam tunes and distribution of run times in neutrino and anti-neutrino modes that would enable DUNE to isolate new physics scenarios from the standard. We can distinguish scenarios at 3 sigma (5 sigma) level for almost all (similar to 50%) values of delta. To the best of our knowledge, our strategy is entirely new and has not been reported elsewhere.  
  Address [Masud, Mehedi] Univ Valencia, CSIC, Inst Fis Corpuscular, Astroparticle & High Energy Phys Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2E, E-46980 Valencia, Spain, Email: masud@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456392400033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3891  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O. url  doi
openurl 
  Title Cosmology-marginalized approaches in Bayesian model comparison: The neutrino mass as a case study Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 2 Pages 021301 - 6pp  
  Keywords  
  Abstract We propose here a novel method which singles out the a priori unavoidable dependence on the underlying cosmological model when extracting parameter constraints, providing robust limits which only depend on the considered dataset. Interestingly, when dealing with several possible cosmologies and interpreting the Bayesian preference in terms of the Gaussian statistical evidence, the preferred model is much less favored than when only two cases are compared. As a working example, we apply our approach to the cosmological neutrino mass bounds, which play a fundamental role not only in establishing the contribution of relic neutrinos to the dark matter of the Universe but also in the planning of future experimental searches of the neutrino character and of the neutrino mass ordering.  
  Address [Gariazzo, S.; Mena, O.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456800000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3893  
Permanent link to this record
 

 
Author Etxebeste, A.; Barrio, J.; Bernabeu, J.; Lacasta, C.; Llosa, G.; Muñoz, E.; Ros, A.; Oliver, J.F. doi  openurl
  Title Study of sensitivity and resolution for full ring PET prototypes based on continuous crystals and analytical modeling of the light distribution Type Journal Article
  Year 2019 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 64 Issue 3 Pages 035015 - 17pp  
  Keywords continuous crystals; NEMA NU 4-2008; positron emission tomography (PET); Monte Carlo simulations; image reconstruction; depth of interaction  
  Abstract Sensitivity and spatial resolution are the main parameters to maximize in the performance of a PET scanner. For this purpose, detectors consisting of a combination of continuous crystals optically coupled to segmented photodetectors have been employed. With the use of continuous crystals the sensitivity is increased with respect to the pixelated crystals. In addition, spatial resolution is no longer limited to the crystal size. The main drawback is the difficulty in determining the interaction position. In this work, we present the characterization of the performance of a full ring based on cuboid continuous crystals coupled to SiPMs. To this end, we have employed the simulations developed in a previous work for our experimental detector head. Sensitivity could be further enhanced by using tapered crystals. This enhancement is obtained by increasing the solid angle coverage, reducing the wedge-shaped gaps between contiguous detectors. The performance of the scanners based on both crystal geometries was characterized following NEMA NU 4-2008 standardized protocol in order to compare them. An average sensitivity gain over the entire axial field of view of 13.63% has been obtained with tapered geometry while similar performance of the spatial resolution has been proven with both scanners. The activity at which NECR and true peak occur is smaller and the peak value is greater for tapered crystals than for cuboid crystals. Moreover, a higher degree of homogeneity was obtained in the sensitivity map due to the tighter packing of the crystals, which reduces the gaps and results in a better recovery of homogeneous regions than for the cuboid configuration. Some of the results obtained, such as spatial resolution, depend on the interaction position estimation and may vary if other method is employed.  
  Address [Etxebeste, Ane; Barrio, John; Bernabeu, Jose; Lacasta, Carlos; Llosa, Gabriela; Munoz, Enrique; Ros, Ana; Oliver, Josef F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: ane.etxebeste@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457182500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3897  
Permanent link to this record
 

 
Author Rojas, N.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Simplest scoto-seesaw mechanism Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 789 Issue Pages 132-136  
  Keywords  
  Abstract By combining the simplest (3,1) version of the seesaw mechanism containing a single heavy “right-handed” neutrino with the minimal scotogenic approach to dark matter, we propose a theory for neutrino oscillations. The “atmospheric” mass scale arises at tree level from the seesaw, while the “solar” oscillation scale emerges radiatively, through a loop involving the “dark sector” exchange. Such simple setup gives a clear interpretation of the neutrino oscillation lengths, has a viable WIMP dark matter candidate, and implies a lower bound on the neutrinoless double beta decay rate.  
  Address [Rojas, Nicolas] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espana 1680, Valparaiso, Chile, Email: nicolas.rojasro@usm.cl;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457165400017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3898  
Permanent link to this record
 

 
Author de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tortola, M. url  doi
openurl 
  Title Constraining the invisible neutrino decay with KM3NeT-ORCA Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 789 Issue Pages 472-479  
  Keywords Neutrino masses and mixing; Neutrino oscillations; Neutrino decay; Neutrino telescopes  
  Abstract Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin(2) theta(23) and Delta m(31)(2), as well as the sensitivity to the neutrino mass ordering.  
  Address [de Salas, P. F.; Pastor, S.; Ternes, C. A.; Thakore, T.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457165400063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3902  
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Neutrino predictions from a left-right symmetric flavored extension of the standard model Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 065 - 24pp  
  Keywords Beyond Standard Model; Discrete Symmetries; Neutrino Physics; Quark Masses and SM Parameters  
  Abstract We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.  
  Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459168900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3917  
Permanent link to this record
 

 
Author Yu, Q.X.; Pavao, R.; Debastiani, V.R.; Oset, E. url  doi
openurl 
  Title Description of the Xic and Xib states as molecular states Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 2 Pages 167 - 14pp  
  Keywords  
  Abstract In this work we study several c and b states dynamically generated from the meson-baryon interaction in coupled channels, using an extension of the local hidden gauge approach in the Bethe-Salpeter equation. These molecular states appear as poles of the scattering amplitudes, and several of them can be identified with the experimentally observed c states, including the c(2790), c(2930), c(2970), c(3055) and c(3080). Also, for the recently reported b(6227) state, we find two poles with masses and widths remarkably close to the experimental data, for both the JP=1/2- and JP=3/2- sectors.  
  Address [Yu, Q. X.] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China, Email: qixinyu@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459831800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3929  
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J. url  doi
openurl 
  Title Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
  Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 46 Issue 4 Pages 045001 - 155pp  
  Keywords particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics  
  Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.  
  Address [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460153900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3930  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva