|   | 
Details
   web
Records
Author NEXT Collaboration (Monrabal, F. et al); Laing, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Felkai, R.; Martinez, A.; Musti, M.; Querol, M.; Rodriguez, J.; Simon, A.; Torrent, J.; Botas, A.; Diaz, J.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Renner, J.; Romo-Luque, C.; Sorel, M.; Yahlali, N.
Title The NEXT White (NEW) detector Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P12010 - 38pp
Keywords Double-beta decay detectors; Particle tracking detectors; Scintillators; scintillation and light emission processes (solid gas and liquid scintillators); Time projection chambers
Abstract Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation.
Address [Ouero, M.; Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: monrabal18@gmail.com
Corporate Author (up) Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000452463500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3833
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo-Luque, C.; Simon, A.; Sorel, M.; Yahlali, N.
Title Electroluminescence TPCs at the thermal diffusion limit Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 027 - 23pp
Keywords Dark Matter and Double Beta Decay (experiments); Photon production; Particle correlations and fluctuations; Rare decay
Abstract The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the Xe-136 isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 for pure xenon down to 2.5 using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.
Address [Henriques, C. A. O.; Monteiro, C. M. B.; Freitas, E. D. C.; Mano, R. D. P.; Jorge, M. R.; Fernandes, A. F. M.; Fernandes, L. M. P.; dos Santos, J. M. F.] Univ Coimbra, Phys Dept, LIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: pancho@gian.fis.uc.pt
Corporate Author (up) Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000455157300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3873
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J.
Title Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 46 Issue 4 Pages 045001 - 155pp
Keywords particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics
Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.
Address [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de
Corporate Author (up) Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000460153900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3930
Permanent link to this record
 

 
Author PANDA Collaboration (Barucca, G. et al); Diaz, J.
Title Precision resonance energy scans with the PANDA experiment at FAIR: Sensitivity study for width and line shape measurements of the X(3872) Type Journal Article
Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 55 Issue 3 Pages 42 - 18pp
Keywords
Abstract This paper summarises a comprehensive Monte Carlo simulation study for precision resonance energy scan measurements. Apart from the proof of principle for natural width and line shape measurements of very narrow resonances with PANDA, the achievable sensitivities are quantified for the concrete example of the charmonium-like X(3872) state discussed to be exotic, and for a larger parameter space of various assumed signal cross-sections, input widths and luminosity combinations. PANDA is the only experiment that will be able to perform precision resonance energy scans of such narrow states with quantum numbers of spin and parities that differ from JPC=1--.
Address [Barucca, G.; Davi, F.; Lancioni, G.; Mengucci, P.; Montalto, L.; Natali, P. P.; Paone, N.; Rinaldi, D.; Scalise, L.] Univ Politecn Marche Ancona, Ancona, Italy, Email: f.nerling@gsi.de
Corporate Author (up) Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000462672600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3963
Permanent link to this record
 

 
Author NEXT Collaboration (McDonald, A.D. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures Type Journal Article
Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P08009 - 19pp
Keywords Charge transport and multiplication in gas; Gaseous imaging and tracking detectors
Abstract We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all E/P, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low E/P in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger E/P. Drift velocities in xenon-helium mixtures are found to be theoretically well predicted. Although longitudinal diffusion in xenon-helium mixtures is found to be larger than anticipated, extrapolation based on the measured longitudinal diffusion coefficients suggest that the use of helium additives to reduce transverse diffusion in xenon gas remains a promising prospect.
Address [McDonald, A. D.; Woodruff, K.; Al Atoum, B.; Jones, B. J. P.; Laing, A.; Nygren, D. R.; Rogers, L.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: austin.mcdonald@uta.edu
Corporate Author (up) Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000482373600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4118
Permanent link to this record