|   | 
Details
   web
Records
Author Biryukov, V.M.; Ruiz Vidal, J.
Title Improved experimental layout for dipole moment measurements at the LHC Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 2 Pages 149 - 11pp
Keywords
Abstract The electric and magnetic dipole moment of charm and bottom baryons can be measured for the first time by using bent crystal technology at the LHC. The experimental method, proposed in recent years, suffers from limited statistics, which dominates the uncertainty of the measurement. In this work, we present an alternative experimental layout, based on the use of crystal lenses, that improves the trapping efficiency by about a factor 15 (35) for a 2-cm (5-mm) target with respect to the nominal layout, with plain crystal faces. The efficiencies are evaluated taking into account the constraints from the LHC machine, and the technical challenges to realize this novel experimental method are discussed.
Address [Biryukov, V. M.] Inst High Energy Phys, Protvino 142281, Russia, Email: Valery.Biryukov@ihep.ru;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000756842100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5133
Permanent link to this record
 

 
Author Blanton, T.D.; Romero-Lopez, F.; Sharpe, S.R.
Title Implementing the three-particle quantization condition for pi(+)pi K-+(+) and related systems Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 098 - 49pp
Keywords Lattice QCD; Lattice Quantum Field Theory
Abstract Recently, the formalism needed to relate the finite-volume spectrum of systems of nondegenerate spinless particles has been derived. In this work we discuss a range of issues that arise when implementing this formalism in practice, provide further theoretical results that can be used to check the implementation, and make available codes for implementing the three-particle quantization condition. Specifically, we discuss the need to modify the upper limit of the cutoff function due to the fact that the left-hand cut in the scattering amplitudes for two nondegenerate particles moves closer to threshold; we describe the decomposition of the three-particle amplitude K-df,K-3 into the matrix basis used in the quantization condition, including both s and p waves, with the latter arising in the amplitude for two nondegenerate particles; we derive the threshold expansion for the lightest three-particle state in the rest frame up to O(1/L-5); and we calculate the leading-order predictions in chiral perturbation theory for K-df,K-3 in the pi(+)pi K-+(+) and pi+K+K+ systems. We focus mainly on systems with two identical particles plus a third that is different (“2+1” systems). We describe the formalism in full detail, and present numerical explorations in toy models, in particular checking that the results agree with the threshold expansion, and making a prediction for the spectrum of pi(+)pi K-+(+) levels using the two- and three-particle interactions predicted by chiral perturbation theory.
Address [Blanton, Tyler D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA, Email: blantonl@umd.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000755933600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5134
Permanent link to this record
 

 
Author Kim, J.S.; Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R.
Title The new (g-2)(mu) and right-handed sneutrino dark matter Type Journal Article
Year 2022 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 974 Issue Pages 115637 - 23pp
Keywords
Abstract In this paper we investigate the (g – 2)(mu) discrepancy in the context of the R-parity conserving next-to minimal supersymmetric Standard Model plus right-handed neutrinos superfields. The model has the ability to reproduce neutrino physics data and includes the interesting possibility to have the right-handed sneutrino as the lightest supersymmetric particle and a viable dark matter candidate. Since right-handed sneutrinos are singlets, no new contributions for delta a(mu) with respect to the MSSM and NMSSM are present. However, the possibility to have the right-handed sneutrino as the lightest supersymmetric particle opens new ways to escape Large Hadron Collider and direct detection constraints. In particular, we find that dark matter masses within 10 less than or similar to m((upsilon) over tildeR) less than or similar to 600 GeV are fully compatible with current experimental constraints. Remarkably, not only spectra with light sleptons are needed, but we obtain solutions with m((mu) over tilde) greater than or similar to 600 GeV in the entire dark matter mass range that could be probed by new (g – 2)(mu) data in the near future. In addition, dark matter direct detection experiments will be able to explore a sizable portion of the allowed parameter space with mvR < 300 GeV, while indirect detection experiments will be able to probe a much smaller fraction within 200 less than or similar to m((nu)over tilde>R) less than or similar to 350 GeV.
Address [Kim, Jong Soo] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa, Email: jongsoo.kim@tu-dortmund.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000760320700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5135
Permanent link to this record
 

 
Author Lerendegui-Marco, J.; Balibrea-Correa, J.; Babiano-Suarez, V.; Ladarescu, I.; Domingo-Pardo, C.
Title Towards machine learning aided real-time range imaging in proton therapy Type Journal Article
Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 12 Issue 1 Pages 2735 - 17pp
Keywords
Abstract Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by gamma-ray energies spanning up to 5-6 MeV, rather low gamma-ray emission yields and very intense neutron induced gamma-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high gamma-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr3. Its high time-resolution (CRT similar to 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV gamma-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10(8) protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy gamma-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
Address [Lerendegui-Marco, Jorge; Balibrea-Correa, Javier; Babiano-Suarez, Victor; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000757537100018 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5136
Permanent link to this record
 

 
Author Coves, A.; Maestre, H.; Archiles, R.; Andres, M.V.; Gimeno, B.
Title Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 10 Issue Pages 18843-18854
Keywords Electromagnetic waveguides; Optical waveguides; Planar waveguides; Gratings; Surface waves; Surface impedance; Optical surface waves; Surface impedance; hollow-core waveguide; surface-relief grating
Abstract A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.
Address [Coves, Angela; Maestre, Haroldo] Univ Miguel Hernandez Elche, Dept Commun Engn I3E, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000760714900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5139
Permanent link to this record