|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Exclusive dielectron production in ultraperipheral Pb+Pb collisions at √s_NN=5.02 TeV with ATLAS Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 182 - 42pp
Keywords Heavy Ion Experiments; Heavy-Ion Collision
Abstract Exclusive production of dielectron pairs, gamma gamma -> e(+) e(-), is studied using L-int = 1.72 nb(-1) of data from ultraperipheral collisions of lead nuclei at root s(NN) = 5.02TeV recorded by the ATLAS detector at the LHC. The process of interest proceeds via photon-photon interactions in the strong electromagnetic fields of relativistic lead nuclei. Dielectron production is measured in the fiducial region defined by following requirements: electron transverse momentum p(T)(e) > 2.5 GeV, absolute electron pseudorapidity |eta(e)| < 2.5, dielectron invariant mass m(ee) > 5 GeV, and dielectron transverse momentum p(T)(ee) < 2 GeV. Differential cross-sections are measured as a function of mee, average peT, absolute dielectron rapidity |y(ee)|, and scattering angle in the dielectron rest frame, | cos theta* |, in the inclusive sample, and also with a requirement of no activity in the forward direction. The total integrated fiducial cross-section is measured to be 215 +/- 1(stat.) (+23)(-20)(syst.) +/- 4(lumi.) μb. Within experimental uncertainties the measured integrated cross-section is in good agreement with the QED predictions from the Monte Carlo programs Starlight and SuperChic, confirming the broad features of the initial photon fluxes. The differential cross-sections show systematic differences from these predictions which are more pronounced at high |y(ee)| and | cos theta* | values.
Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001069745300005 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5747
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L.
Title Electron scattering and neutrino physics Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 12 Pages 120501 - 34pp
Keywords neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering
Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.
Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:001086874300001 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5748
Permanent link to this record
 

 
Author Wang, D.
Title Pantheon plus tomography and Hubble tension Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 9 Pages 813 - 12pp
Keywords
Abstract The recently released Type Ia supernovae (SNe Ia) sample, Pantheon+, is an updated version of Pantheon and has very important cosmological implications. To explore the origin of the enhanced constraining power and internal correlations of datasets in different redshifts, we perform a comprehensively tomographic analysis of the Pantheon+ sample without and with the Cepheid host distance calibration, respectively. Specifically, we take two binning methods to analyze the Pantheon+ sample, i.e., equal redshift interval and equal supernovae number for each bin. For the case of equal redshift interval, after dividing the sample to 10 bins, the first bin in the redshift range z is an element of [0.00122, 0.227235] dominates the constraining power of the whole sample. For the case of equal supernovae number, the first three low redshift bins prefer a large matter fraction Omega(m) and only the sixth bin gives a relatively low cosmic expansion rate H-0. For both binning methods, we find no obvious evidence of evolution of H-0 and Omega(m) at the 2 sigma confidence level. The inclusion of the SHOES calibration can significantly compress the parameter space of background dynamics of the universe in each bin. When not considering the calibration, combining the Pantheon+ sample with cosmic microwave background, baryon acoustic oscillations, cosmic chronometers, galaxy clustering and weak lensing data, we give the strongest 1 sigma constraint H-0 = 67.88 +/- 0.42kms(-1) Mpc(-1). However, the addition of the calibration leads to a global shift of the parameter space from the combined constraint and H-0 = 68.66 +/- 0.42 km s(-1) Mpc(-1), which is inconsistent with the Planck-2018 result at about 2 sigma confidence level.
Address [Wang, Deng] Univ Valencia, Inst Fis Corpuscular CSIC, Paterna 46980, Spain, Email: cstar@nao.cas.cn
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001085063100002 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5749
Permanent link to this record
 

 
Author Davesne, D.; Holt, J.W.; Navarro, J.; Pastore, A.
Title Landau sum rules with noncentral quasiparticle interactions Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 3 Pages 034003 - 7pp
Keywords
Abstract We derive explicit expressions for the Landau sum rules for the case of the most general spin-dependent quasiparticle interaction including all possible tensor interactions. For pure neutron matter, we investigate the convergence of the sum rules at different orders of approximation. Employing modern nuclear Hamiltonians based on chiral effective field theory, we find that the inclusion of noncentral interactions improves the convergence of the sum rules only for low densities (n <= 0.1 fm-3). Around nuclear matter saturation density, we find that even ostensibly perturbative nuclear interactions violate the sum rules considerably. By artificially weakening the strength of the nuclear Hamiltonian, the convergence can be improved.
Address [Davesne, D.] Univ Lyon, Univ Lyon 1, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001088200900001 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5750
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title Search for the doubly heavy baryon Ξbc+ decaying to J/ψΞc+ Type Journal Article
Year 2023 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 47 Issue 9 Pages 093001 - 13pp
Keywords QCD; B physics; charm physics; spectroscopy
Abstract A first search for the Xi(+)(bc) -> J/psi Xi c+ decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb(-1) recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of and standard deviations at masses of 6571 and 6694 MeV/c(2), respectively. Upper limits are set on the Xi(+)(bc) baryon production cross-section times the branching fraction relative to that of the B-c(+) -> J/psi Xi(+)(c) decay at centre-of-mass energies of 8 and 13 TeV, in the Xi(+)(bc) and in the rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to, respectively. Upper limits are presented as a function of the Xi(+)(bc) mass and lifetime.
Address [Baptista De Souza Leite, J.; Bediaga, I. B.; Torres, M. Cruz; De Freitas Carneiro Da Graca, U.; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fisicas CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:001062113700001 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5751
Permanent link to this record