toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Monerris-Belda, O.; Cervera Marin, R.; Rodriguez Jodar, M.; Diaz-Caballero, E.; Alcaide Guillen, C.; Petit, J.; Boria, V.E.; Gimeno, B.; Raboso, D. doi  openurl
  Title High Power RF Discharge Detection Technique Based on the In-Phase and Quadrature Signals Type Journal Article
  Year 2021 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.  
  Volume 69 Issue 12 Pages 5429-5438  
  Keywords Radio frequency; Microwave theory and techniques; Electric breakdown; Discharges (electric); Noise measurement; Sensitivity; RF signals; Corona; microwave devices; multipactor; radio frequency (RF) breakdown; RF high power  
  Abstract High power radio frequency (RF) breakdown testing is a subject of great relevance in the space industry, due to the increasing need of higher transmission power and smaller devices. This work presents a novel RF breakdown detection system, which monitors the same parameters as the microwave nulling system but with several advantages. Where microwave nulling-a de facto standard in RF breakdown testing-is narrowband and requires continuous tuning to keep its sensitivity, the proposed technique is broadband and maintains its performance for any RF signal. On top of that, defining the detection threshold is cumbersome due to the lack of an international standardized criterion. Small responses may appear in the detection system during the test and, sometimes, it is not possible to determine if these are an actual RF breakdown or random noise. This new detection system uses a larger analysis bandwidth, thus reducing the cases in which a small response is difficult to be classified. The proposed detection method represents a major step forward in high power testing as it runs without human intervention, warning the operator or decreasing the RF power automatically much faster than any human operator.  
  Address [Monerris-Belda, Oscar; Cervera Marin, Raul; Rodriguez Jodar, Miguel; Petit, John] Val Space Consortium, Valencia 46022, Spain, Email: oscar.monerris@val-space.com  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000725804500027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5042  
Permanent link to this record
 

 
Author (down) Moline, A.; Sanchez-Conde, M.A.; Palomares-Ruiz, S.; Prada, F. url  doi
openurl 
  Title Characterization of subhalo structural properties and implications for dark matter annihilation signals Type Journal Article
  Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 466 Issue 4 Pages 4974-4990  
  Keywords galaxies: haloes; cosmology: theory; dark matter  
  Abstract A prediction of the standard Lambda cold dark matter cosmology is that dark matter (DM) haloes are teeming with numerous self-bound substructure or subhaloes. The precise properties of these subhaloes represent important probes of the underlying cosmological model. We use data from Via Lactea II and Exploring the Local Volume in Simulations N-body simulations to learn about the structure of subhaloes with masses 10(6)-10(11) h(-1) M circle dot. Thanks to a superb subhalo statistics, we study subhalo properties as a function of distance to host halo centre and subhalo mass, and provide a set of fits that accurately describe the subhalo structure. We also investigate the role of subhaloes on the search for DM annihilation. Previous work has shown that subhaloes are expected to boost the DM signal of their host haloes significantly. Yet, these works traditionally assumed that subhaloes exhibit similar structural properties than those of field haloes, while it is known that subhaloes are more concentrated. Building upon our N-body data analysis, we refine the substructure boost model of Sanchez-Conde & Prada (2014), and find boosts that are a factor 2-3 higher. We further refine the model to include unavoidable tidal stripping effects on the subhalo population. For field haloes, this introduces a moderate (similar to 20-30 per cent) suppression. Yet, for subhaloes like those hosting dwarf galaxy satellites, tidal stripping plays a critical role, the boost being at the level of a few tens of percent at most. We provide a parametrization of the boost for field haloes that can be safely applied over a wide halo mass range.  
  Address [Moline, Angeles] Univ Tecn Lisboa, CFTP, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: angeles.moline@gmail.com;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402849400088 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3164  
Permanent link to this record
 

 
Author (down) Molina, R.; Xie, J.J.; Liang, W.H.; Geng, L.S.; Oset, E. url  doi
openurl 
  Title Theoretical interpretation of the D-s(+) -> pi(+)pi(0)eta decay and the nature of a(0)(980) Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 803 Issue Pages 135279 - 4pp  
  Keywords  
  Abstract In a recent paper [I], the BESIII Collaboration reported the so-called first observation of pure W-annihi- lation decays D-s(+) -> a(0)(+) (980)pi(0) and D-s(+) -> a(0)(0)(980)pi(+). The measured absolute branching fractions are, however, puzzlingly larger than those of other measured pure W-annihilation decays by at least one order of magnitude. In addition, the relative phase between the two decay modes is found to be about 0 degrees. In this letter, we show that all these can be easily understood if the a(0)(980) is a dynamically generated state from (K) over barK and pi eta interactions in coupled channels. In such a scenario, the D-s(+) decay proceeds via internal W emission instead of W-annihilation, which has a larger decay rate than W-annihilation. The proposed decay mechanism and the molecular nature of the a(0)(980) also provide a natural explanation to the measured negative interference between the two decay modes.  
  Address [Molina, Raquel; Liang, Wei-Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: raqumoli@ucm.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521730300066 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4356  
Permanent link to this record
 

 
Author (down) Molina, R.; Xiao, C.W.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title Correlation functions for the N*(1535) and the inverse problem Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 5 Pages 054002 - 10pp  
  Keywords  
  Abstract The N*(1535) can be dynamically generated in the chiral unitary approach with the coupled channels, K0E+; K+E0; K+A, and eta p. In this work, we evaluate the correlation functions for every channel and face the inverse problem. Assuming the correlation functions to correspond to real measurements, we conduct a fit to the data within a general framework in order to extract the information contained in these correlation functions. The bootstrap method is used to determine the uncertainties of the different observables, and we find that, assuming errors of the same order than in present measurements of correlation functions, one can determine the scattering length and effective range of all channels with a very good accuracy. Most remarkable is the fact that the method predicts the existence of a bound state of isospin 12 nature around the mass of the N*(1535) with an accuracy of 6 MeV. These results should encourage the actual measurement of these correlation functions (only the K+A one is measured so far), which can shed valuable light on the relationship of the N*(1535) state to these coupled channels, a subject of continuous debate.  
  Address [Molina, Raquel; Xiao, Chu -Wen; Liang, Wei -Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: aquel.molina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001179747300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6000  
Permanent link to this record
 

 
Author (down) Molina, R.; Ruiz de Elvira, J. url  doi
openurl 
  Title Light- and strange-quark mass dependence of the rho(770) meson revisited Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 017 - 74pp  
  Keywords Chiral Lagrangians; Lattice QCD  
  Abstract Recent lattice data on pi pi -scattering phase shifts in the vector-isovector channel, pseudoscalar meson masses and decay constants for strange-quark masses smaller or equal to the physical value allow us to study the strangeness dependence of these observables for the first time. We perform a global analysis on two kind of lattice trajectories depending on whether the sum of quark masses or the strange-quark mass is kept fixed to the physical point. The quark mass dependence of these observables is extracted from unitarized coupled-channel one-loop Chiral Perturbation Theory. This analysis guides new predictions on the rho (770) meson properties over trajectories where the strange-quark mass is lighter than the physical mass, as well as on the SU(3) symmetric line. As a result, the light- and strange-quark mass dependence of the rho (770) meson parameters are discussed and precise values of the Low Energy Constants present in unitarized one-loop Chiral Perturbation Theory are given. Finally, the current discrepancy between two- and three-flavor lattice results for the rho (770) meson is studied.  
  Address [Molina, R.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: raqumoli@ucm.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000591048300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4615  
Permanent link to this record
 

 
Author (down) Molina, R.; Oset, E. url  doi
openurl 
  Title Triangle singularity in B- ->K- X(3872); X ->pi 0 pi+ pi- and the X(3872) mass Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 5 Pages 451 - 9pp  
  Keywords  
  Abstract We evaluate the contribution to the X(3872) width from a triangle mechanism in which the X decays into D0D<overbar></mml:mover>0-cc, then the D0(D<overbar></mml:mover>0) decays into D0 pi 0 (D<overbar></mml:mover>0 pi 0) and the D0D<overbar></mml:mover>0 fuse to produce pi+pi-. This mechanism produces an asymmetric peak from a triangle singularity in the pi+pi- invariant mass with a shape very sensitive to the X mass. We evaluate the branching ratios for a reaction where this effect can be seen in the B--> K-pi 0 pi+pi- reaction and show that the determination of the peak in the invariant mass distribution of pi <mml:mo>+pi <mml:mo>- is all that is needed to determine the X mass. Given the present uncertainties in the X mass, which do not allow to know whether the D<mml:mo>0<mml:mover accent=“true”>D<mml:mo stretchy=“false”><overbar></mml:mover>0 state is bound or not, measurements like the one suggested here should be most welcome to clarify this issue.  
  Address [Molina, Raquel] Univ Complutense Madrid, Dept Fis Teor, Fac Fis, Plaza Ciencias 1, Madrid 28040, Spain, Email: raqumoli@ucm.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000546996400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4461  
Permanent link to this record
 

 
Author (down) Molina, R.; Oset, E. url  doi
openurl 
  Title Molecular picture for the X-0(2866) as a D*(K)over-bar* J(P)=0(+) state and related 1(+), 2(+) states Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 811 Issue Pages 135870 - 7pp  
  Keywords  
  Abstract We recall the predictions made ten years ago about a bound state of J(P) = 0(+) in I = 0 of the D*(K) over bar* system, which is manifestly exotic, and we associate it to the X-0(2866) state reported in the recent LHCb experiment. Fine tuning the parameters to reproduce exactly the mass and width of the X-0(2866) state, we report two more states stemming from the same interaction, one with 1(+) and the other with 2(+). For reasons of parity, the 1(+) state cannot be observed in D (K) over bar decay, and we suggest to observe it in the D*(K) over bar spectrum. On the other hand, the 2(+) state can be observed in D (K) over bar decay but the present experiment has too small statistics in the region of its mass to make any claim. We note that measurements of the D*(K) over bar spectrum and of the D (K) over bar with more statistics should bring important information concerning the nature of the X-0(2866) and related ones that could be observed.  
  Address [Molina, R.; Oset, E.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: Raquel.Molina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612225400022 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4701  
Permanent link to this record
 

 
Author (down) Molina, R.; Oset, E. url  doi
openurl 
  Title T-cS (2900) as a threshold effect from the interaction of the D* K *, D *(s)rho channels Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 5 Pages 056015 - 7pp  
  Keywords  
  Abstract We look at the mass distribution of the D(S)(+)i Pi(-) In the B-0 ->(DDS+)-D-0 Pi(-)decay, where a peak has been observed in the region of the D (*) (s)rho, D* K* thresholds. By creating these two channels together with a D (0) in B-0 decay and letting them interact as coupled channels, we obtain a structure around their thresholds, short of producing a bound state, which leads to a peak in the D-S(+) Pi(-)mass distribution in the B-0 -> (DDS+)-D-0 Pi(-)decay. We conclude that the interaction between the D*K* and D (*) (s)rho is essential to produce the cusp structure that we associate to the recently seen Tcs(2900), and that its experimental width is mainly due to the decay width of the rho meson. The peak obtained together with a smooth background reproduces fairly well the experimental mass distribution observed in the B (0)-> (DDS+)-D-0 Pi(-) decay.  
  Address [Molina, R.] Univ Valencia, Ctr Mixto, Inst Invest Paterna, CSIC,Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000989395900006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5568  
Permanent link to this record
 

 
Author (down) Molina, R.; Liu, Z.W.; Geng, L.S.; Oset, E. url  doi
openurl 
  Title Correlation function for the a0(980) Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 3 Pages 328 - 8pp  
  Keywords  
  Abstract We have conducted a model independent analysis of the (K+K0) pair correlation function obtained from ultra high energy pp collisions, with the aim of extracting the information encoded in it related to the KK interaction and the coupled channel pi(+)eta. With the present large errors at small relative (K+K0) momenta, we find that the information obtained about the scattering matrix suffers from large uncertainties. Even then, we are able to show that the data imply the existence of the a(0) resonance, a(0)(980), showing as a strong cusp close to the KK threshold. We also mention that the measurement of the pi(+)eta correlation function will be essential in order to constrain more the information on KK dynamics that can be obtained from correlation functions.  
  Address [Molina, R.; Oset, E.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Parc Cient UV, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: Raquel.Molina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195507100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6030  
Permanent link to this record
 

 
Author (down) Molina, R.; Ikeno, N.; Oset, E. url  doi
openurl 
  Title Sequential single pion production explaining the dibaryon “d*(2380)” peak Type Journal Article
  Year 2023 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 47 Issue 4 Pages 041001 - 10pp  
  Keywords dibaryon; sequential mechanism; explanation  
  Abstract In this study, we investigate the two step sequential one pion production mechanism, that is, np(I=0)->pi(-)pp followed by the fusion reaction pp ->pi(+)d, to describe the np ->pi(+)pi(-)d reaction with in state I = 0 . In this reaction, a narrow peak identified with a “ d(2380) ” dibaryon has been previously observed. We discover that the second reaction step pp ->pi(+)d is driven by a triangle singularity that determines the position of the peak of the reaction and the high strength of the cross section. The combined cross section of these two mechanisms produces a narrow peak with a position, width, and strength, that are compatible with experimental observations within the applied approximations made. This novel interpretation of the peak accomplished without invoking a dibaryon explains why this peak has remained undetected in other reactions.  
  Address [Molina, R.; Ikeno, Natsumi; Oset, Eulogio] Univ Valencia, Ctr Mixto, Inst Invest Paterna, CSIC,Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: Raquel.Molina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000940915300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5485  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva