toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Tetrault, M.A.; Oliver, J.F.; Bergeron, M.; Lecomte, R.; Fontaine, R. doi  openurl
  Title Real Time Coincidence Detection Engine for High Count Rate Timestamp Based PET Type Journal Article
  Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 57 Issue 1 Pages 117-124  
  Keywords Coincidence detection; Positron Emission Tomography (PET)  
  Abstract Coincidence engines follow two main implementation flows: timestamp based systems and AND-gate based systems. The latter have been more widespread in recent years because of its lower cost and high efficiency. However, they are highly dependent on the selected electronic components, they have limited flexibility once assembled and they are customized to fit a specific scanner's geometry. Timestamp based systems are gathering more attention lately, especially with high channel count fully digital systems. These new systems must however cope with important singles count rates. One option is to record every detected event and postpone coincidence detection offline. For daily use systems, a real time engine is preferable because it dramatically reduces data volume and hence image preprocessing time and raw data management. This paper presents the timestamp based coincidence engine for the LabPET(TM), a small animal PET scanner with up to 4608 individual readout avalanche photodiode channels. The engine can handle up to 100 million single events per second and has extensive flexibility because it resides in programmable logic devices. It can be adapted for any detector geometry or channel count, can be ported to newer, faster programmable devices and can have extra modules added to take advantage of scanner-specific features. Finally, the user can select between full processing mode for imaging protocols and minimum processing mode to study different approaches for coincidence detection with offline software.  
  Address [Tetrault, M. -A.; Fontaine, R.] Univ Sherbrooke, Dept Elect & Comp Engn, Sherbrooke, PQ J1K 2R1, Canada, Email: Marc-Andre.Tetrault@USherbrooke.ca  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274391000016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 500  
Permanent link to this record
 

 
Author (down) Real, D.; Calvo, D.; Diaz, A.; Alves Garre, S.; Carretero, V.; Sanchez Losa, A.; Salesa Greus, F. doi  openurl
  Title An Ultra-Narrow Time Optical Pulse Emitter Based on a Laser: UNTOPEL Type Journal Article
  Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 70 Issue 10 Pages 2364-2372  
  Keywords Instrumentation electronics; neutrino telescope instrumentation; subnanosecond light source; time calibration instrument  
  Abstract Light sources that emit repetitive subnanosecond pulses are used in neutrino telescopes for time calibration. Optical pulses with an ultra-narrow (subnanosecond) width can replicate the light produced by neutrino interactions, and are an important calibration and test element. By measuring the time-of-flight of the light, it is possible to provide a relative time calibration for all the detector photomultipliers. This work presents the ultra-narrow time optical pulse emitter based on a laser (UNTOPEL), an instrument emitting ultra-short laser optical pulses with a duration of 500 ps, energies per pulse of four microjoules at a wavelength of 532 nm, and a timing precision of 400 ps. The UNTOPEL pulse intensity can be fine-tuned, which is a novelty and a significant advantage in those applications that need to illuminate light detectors located at different distances with the same light intensity. The UNTOPEL pulse intensity can be controlled remotely, allowing for its use in operating conditions where physical access is impossible or difficult. Moreover, it is easy to operate and can be easily controlled through an inter-integrated circuit bus. The UNTOPEL is a sound instrument used when subnanosecond pulses and variable energy emissions are needed.  
  Address [Real, Diego; Calvo, David; Garre, Sergio Alves; Carretero, Victor; Losa, Agustin Sanchez; Greus, FranciscoSalesa] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001098078200010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5795  
Permanent link to this record
 

 
Author (down) Oliver, J.F.; Fuster-Garcia, E.; Cabello, J.; Tortajada, S.; Rafecas, M. doi  openurl
  Title Application of Artificial Neural Network for Reducing Random Coincidences in PET Type Journal Article
  Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 60 Issue 5 Pages 3399-3409  
  Keywords  
  Abstract Positron Emission Tomography (PET) is based on the detection in coincidence of the two photons created in a positron annihilation. In conventional PET, this coincidence identification is usually carried out through a coincidence electronic unit. An accidental coincidence occurs when two photons arising from different annihilations are classified as a coincidence. Accidental coincidences are one of the main sources of image degradation in PET. Some novel systems allow coincidences to be selected post-acquisition in software, or in real time through a digital coincidence engine in an FPGA. These approaches provide the user with extra flexibility in the sorting process and allow the application of alternative coincidence sorting procedures. In this work a novel sorting procedure based on Artificial Neural Network (ANN) techniques has been developed. It has been compared to a conventional coincidence sorting algorithm based on a time coincidence window. The data have been obtained from Monte-Carlo simulations. A small animal PET scanner has been implemented to this end. The efficiency (the ratio of correct identifications) can be selected for both methods. In one case by changing the actual value of the coincidence window used, and in the other by changing a threshold at the output of the neural network. At matched efficiencies, the ANN-based method always produces a sorted output with a smaller random fraction. In addition, two differential trends are found: the conventional method presents a maximum achievable efficiency, while the ANN-based method is able to increase the efficiency up to unity, the ideal value, at the cost of increasing the random fraction. Images reconstructed using ANN sorted data (no compensation for randoms) present better contrast, and those image features which are more affected by randoms are enhanced. For the image quality phantom used in the paper, the ANN method decreases the spill-over ratio by a factor of 18%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325827200027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1611  
Permanent link to this record
 

 
Author (down) Nguyen, C.V.; Gillam, J.E.; Brown, J.M.C.; Martin, D.V.; Nikulin, D.A.; Dimmock, M.R. doi  openurl
  Title Towards Optimal Collimator Design for the PEDRO Hybrid Imaging System Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 58 Issue 3 Pages 639-650  
  Keywords Compton scattering enhancement; multiple pinhole; PEDRO  
  Abstract The Pixelated Emission Detector for RadiOisotopes (PEDRO) is a hybrid imaging system designed for the measurement of single photon emission from small animal models. The proof-of-principle device consists of a Compton-camera situated behind a mechanical collimator and is intended to provide optimal detection characteristics over a broad spectral range, from 30 to 511 keV. An automated routine has been developed for the optimization of large-area slits in the outer regions of a collimator which has a central region allocated for pinholes. The optimization was tested with a GEANT4 model of the experimental prototype. The data were blurred with the expected position and energy resolution parameters and a Bayesian interaction ordering algorithm was applied. Images were reconstructed using cone back-projection. The results show that the optimization technique allows the large-area slits to both sample fully and extend the primary field of view (FoV) determined by the pinholes. The slits were found to provide truncation of the back-projected cones of response and also an increase in the success rate of the interaction ordering algorithm. These factors resulted in an increase in the contrast and signal-to-noise ratio of the reconstructed image estimates. Of the two configurations tested, the cylindrical geometry outperformed the square geometry, primarily because of a decrease in artifacts. This was due to isotropic modulation of the cone surfaces, that can be achieved with a circular shape. Also, the cylindrical geometry provided increased sampling of the FoV due to more optimal positioning of the slits. The use of the cylindrical collimator and application of the transmission function in the reconstruction was found to improve the resolution of the system by a factor of 20, as compared to the uncollimated Compton camera. Although this system is designed for small animal imaging, the technique can be applied to any application of single photon imaging.  
  Address [Nguyen, Chuong V.; Dimmock, Matthew R.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia, Email: chuong.nguyen@monash.edu  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291655900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 650  
Permanent link to this record
 

 
Author (down) Miñano, M. doi  openurl
  Title Radiation Hard Silicon Strips Detectors for the SLHC Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 58 Issue 3 Pages 1135-1140  
  Keywords High energy physics; microstrip; radiation detectors; silicon; SLHC  
  Abstract While the Large Hadron Collider (LHC) began taking data in 2009, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2018. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrade, super-LHC (sLHC) of the ATLAS microstrip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and the detectors under study. This involves designing silicon detectors, irradiating them to the sLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS microstrip detector will be presented. Important challenges related to engineering layout, powering, cooling and reading out a very large strip detector are presented. Ideas on possible schemes for the layout and support mechanics will be shown.  
  Address IFIC UV CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mercedes.minano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291659300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 651  
Permanent link to this record
 

 
Author (down) Millar, W.L. et al; Bañon Caballero, D. doi  openurl
  Title High-Power Test of Two Prototype X-Band Accelerating Structures Based on SwissFEL Fabrication Technology Type Journal Article
  Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 70 Issue 1 Pages 1-19  
  Keywords Radio frequency; Life estimation; Temperature measurement; Wires; Electric breakdown; Brazing; Rendering (computer graphics); Acceleration; breakdown; high gradient; linear accelerator cavity (LINAC); radio frequency (RF); test facilities; vacuum arc; X-band  
  Abstract This article presents the design, construction, and high-power test of two $X$ -band radio frequency (RF) accelerating structures built as part of a collaboration between CERN and the Paul Scherrer Institute (PSI) for the compact linear collider (CLIC) study. The structures are a modified “tuning-free ” variant of an existing CERN design and were assembled using Swiss free electron laser (SwissFEL) production methods. The purpose of the study is two-fold. The first objective is to validate the RF properties and high-power performance of the tuning-free, vacuum brazed PSI technology. The second objective is to study the structures' high-gradient behavior to provide insight into the breakdown and conditioning phenomena as they apply to high-field devices in general. Low-power RF measurements showed that the structure field profiles were close to the design values, and both structures were conditioned to accelerating gradients in excess of 100 MV/m in CERN's high-gradient test facility. Measurements performed during the second structure test suggest that the breakdown rate (BDR) scales strongly with the accelerating gradient, with the best fit being a power law relation with an exponent of 31.14. In both cases, the test results indicate that stable, high-gradient operation is possible with tuning-free, vacuum brazed structures of this kind.  
  Address [Millar, William L. L.; Grudiev, Alexej; Wuensch, Walter; Lasheras, Nuria Catalan; McMonagle, Gerard; Volpi, Matteo; Paszkiewicz, Jan; Edwards, Amelia; Wegner, Rolf; Bursali, Hikmet; Woolley, Benjamin; Magazinik, Anastasiya; Syratchev, Igor; Vnuchenko, Anna; Pitman, Samantha; del Pozo Romano, Veronica; Caballero, David Banon] CERN, CH-1211 Geneva, Switzerland, Email: lee.millar@cern.ch  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000920658600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5471  
Permanent link to this record
 

 
Author (down) Marco-Hernandez, R.; Bau, M.; Ferrari, M.; Ferrari, V.; Pedersen, F.; Soby, L. doi  openurl
  Title A Low-Noise Charge Amplifier for the ELENA Trajectory, Orbit, and Intensity Measurement System Type Journal Article
  Year 2017 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 64 Issue 9 Pages 2465-2473  
  Keywords Beam position monitor (BPM); charge sensitive amplifier; instrumentation for accelerators; low-noise amplifier; particle accelerators; printed circuits  
  Abstract A low-noise head amplifier has been developed for the extra low energy antiproton ring beam trajectory, orbit, and intensity measurement system at CERN. This system is based on 24 double-electrode electrostatic beam position monitors installed around the ring. A head amplifier is placed close to each beam position monitor to amplify the electrode signals and generate a difference and a sum signal. These signals are sent to the digital acquisition system, about 50 m away from the ring, where they are digitized and further processed. The beam position can be measured by dividing the difference signal by the sum signal while the sum signal gives information relative to the beam intensity. The head amplifier consists of two discrete charge preamplifiers with junction field effect transistor (JFET) inputs, a sum and a difference stage, and two cable drivers. Special attention has been paid to the amplifier printed circuit board design to minimize the parasitic capacitances and inductances at the charge amplifier stages to meet the gain and noise requirements. The measurements carried out on the head amplifier showed a gain of 40.5 and 46.5 dB for the sum and difference outputs with a bandwidth from 200 Hz to 75 MHz and an input voltage noise density lower than 400 pV/v Hz. Twenty head amplifiers have been already installed in the ring and they have been used to detect the first beam signals during the first commissioning stage in November 2016.  
  Address [Marco-Hernandez, Ricardo; Pedersen, Flemming; Soby, Lars] CERN, CH-1217 Meyrin, Switzerland, Email: rmarco@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411029500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3298  
Permanent link to this record
 

 
Author (down) Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J. doi  openurl
  Title Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures Type Journal Article
  Year 2021 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 68 Issue 2 Pages 78-91  
  Keywords RF accelerating structures; RF pulse heating; thermal analysis  
  Abstract The main aim of this work is to present a simple method, based on analytical expressions, for obtaining the temperature increase due to the Joule effect inside the metallic walls of an RF accelerating component. This technique relies on solving the 1-D heat-transfer equation for a thick wall, considering that the heat sources inside the wall are the ohmic losses produced by the RF electromagnetic fields penetrating the metal with finite electrical conductivity. Furthermore, it is discussed how the theoretical expressions of this method can be applied to obtain an approximation to the temperature increase in realistic 3-D RF accelerating structures, taking as an example the cavity of an RF electron photoinjector and a traveling wave linac cavity. These theoretical results have been benchmarked with numerical simulations carried out with commercial finite-element method (FEM) software, finding good agreement among them. Besides, the advantage of the analytical method with respect to the numerical simulations is evidenced. In particular, the model could be very useful during the design and optimization phase of RF accelerating structures, where many different combinations of parameters must be analyzed in order to obtain the proper working point of the device, allowing to save time and speed up the process. However, it must be mentioned that the method described in this article is intended to provide a quick approximation to the temperature increase in the device, which of course is not as accurate as the proper 3-D numerical simulations of the component.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] UV, CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000619349900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4720  
Permanent link to this record
 

 
Author (down) Egea, F.J. et al; Gadea, A.; Barrientos, D.; Huyuk, T. doi  openurl
  Title Design and Test of a High-Speed Flash ADC Mezzanine Card for High-Resolution and Timing Performance in Nuclear Structure Experiments Type Journal Article
  Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 60 Issue 5 Pages 3526-3531  
  Keywords  
  Abstract This work describes new electronics for the EX-OGAM2 (HP-Ge detector array) and NEDA (BC501A-based neutron detector array). A new digitizing card with high resolution has been designed for gamma-ray and neutron spectroscopy experiments. The higher bandwidth requirement of the NEDA signals, together with the necessity for accuracy, require a high sampling rate in order to preserve the shape for real-time Pulse Shape Analysis (PSA). The PSA is of paramount importance for the NEDA to discriminate between neutrons and gamma-ray signals. Both high resolution and high speed parameters are often difficult to achieve in a single electronic unit. These constraints, together with the need to build new digitizing electronics to improve performance and flexibility of signal analysis in nuclear physics experiments, led to the development a new FADC mezzanine card. In this work, the design and development are described, including the characterization procedure and the preliminary measurement results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325827700015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1613  
Permanent link to this record
 

 
Author (down) Egea Canet, F.J. et al; Gadea, A.; Huyuk, T. doi  openurl
  Title A New Front-End High-Resolution Sampling Board for the New-Generation Electronics of EXOGAM2 and NEDA Detectors Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 3 Pages 1056-1062  
  Keywords Acquisition in HP-Ge detectors; high-speed ADCs; low-noise electronics design  
  Abstract This paper presents the final design and results of the FADC Mezzanine for the EXOGAM (EXOtic GAMma array spectrometer) and NEDA (Neutron Detector Array) detectors. The measurements performed include those of studying the effective number of bits, the energy resolution using HP-Ge detectors, as well as timing histograms and discrimination performance. Finally, the conclusion shows how a common digitizing device has been integrated in the experimental environment of two very different detectors which combine both low-noise acquisition and fast sampling rates. Not only the integration fulfilled the expected specifications on both systems, but it also showed how a study of synergy between detectors could lead to the reduction of resources and time by applying a common strategy.  
  Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356458000028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2278  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva