toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Ferreiro, A.; Torrenti, F. url  doi
openurl 
  Title Ultraviolet-regularized power spectrum without infrared distortions in cosmological spacetimes Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 840 Issue Pages 137868 - 6pp  
  Keywords  
  Abstract We reexamine the regularization of the two-point function of a scalar field in a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. Adiabatic regularization provides a set of subtraction terms in momentum space that successfully remove its ultraviolet divergences at coincident points, but can significantly distort the power spectrum at infrared scales, especially for light fields. In this work we propose, by using the intrinsic ambiguities of the renormalization program, a new set of subtraction terms that minimize the distortions for scales k less than or similar to M, with M an arbitrary mass scale. Our method is consistent with local covariance and equivalent to general regularization methods in curved spacetime. We apply our results to the regularization of the power spectrum in de Sitter space: while the adiabatic scheme yields exactly Delta((reg))(phi) = 0 for a massless field, our proposed prescription recovers the standard scale-invariant result Delta((reg))(phi) similar or equal to H-2/(4 pi(2)) at super-horizon scales.  
  Address [Ferreiro, Antonio] Dublin City Univ, Ctr Astrophys & Relat, Sch Math Sci, Dublin 9, Ireland, Email: antonio.ferreiro@dcu.ie;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000968486900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5514  
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Pla, S. url  doi
openurl 
  Title Adiabatic regularization and preferred vacuum state for the lambda phi^4 field theory in cosmological spacetimes Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 6 Pages 065015 - 12pp  
  Keywords  
  Abstract We extend the method of adiabatic regularization by introducing an arbitrary parameter μfor a scalar field with quartic self-coupling in a Friedmann-Lemaitre-Robertson-Walker spacetime at one-loop order. The subtraction terms constructed from this extended version allow us to define a preferred vacuum state at a fixed time ri 1/4 ri0 for this theory. We compute this vacuum state for two commonly used background fields in cosmology, specially in the context of preheating. We also give a possible prescription for an adequate value for mu.  
  Address [Ferreiro, Antonio] Dublin City Univ, Ctr Astrophys & Relat, Sch Math Sci, Dublin, Ireland, Email: antonio.ferreiro@dcu.ie;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000862258200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5382  
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title Role of gravity in the pair creation induced by electric fields Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 4 Pages 045015 - 6pp  
  Keywords  
  Abstract We analyze the pair production induced by homogenous, time-dependent electric fields in an expanding space-time background. We point out that, in obtaining the semiclassical Maxwell equations, two distinct notions of adiabatic renormalization are possible. In Minkowski space, the two recipes turn out to be equivalent. However, in the presence of gravity, only the recipe requiring an adiabatic hierarchy between the gravitational and the gauge field is consistent with the conservation of the energy-momentum tensor.  
  Address [Ferreiro, Antonio; Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, Fac Fis, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, E-46100 Valencia, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442476700003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3703  
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title R-summed form of adiabatic expansions in curved spacetime Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 10 Pages 105011 - 12pp  
  Keywords  
  Abstract The Feynman propagator in curved spacetime admits an asymptotic (Schwinger-DeWitt) series expansion in derivatives of the metric. Remarkably, all terms in the series containing the Ricci scalar R can be summed exactly. We show that this (nonperturbative) property of the Schwinger-DeWitt series has a natural and equivalent counterpart in the adiabatic (Parker-Fulling) series expansion of the scalar modes in an homogeneous cosmological spacetime. The equivalence between both R-summed adiabatic expansions can be further extended when a background scalar field is also present.  
  Address [Ferreiro, Antonio] Univ Valencia, CSIC, Fac Fis, Ctr Mixto,Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000532656100007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4395  
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Navarro-Salas, J. url  doi
openurl 
  Title Pair creation in electric fields, anomalies, and renormalization of the electric current Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 12 Pages 125012 - 13pp  
  Keywords  
  Abstract We investigate the Schwinger pair production phenomena in spatially homogeneous strong electric fields. We first consider scalar QED in four-dimensions and discuss the potential ambiguity in the adiabatic order assignment for the electromagnetic potential required to fix the renormalization subtractions. We argue that this ambiguity can be solved by invoking the conformal anomaly when both electric and gravitational backgrounds are present. We also extend the adiabatic regularization method for spinor QED in two-dimensions and find consistency with the chiral anomaly. We focus on the issue of the renormalization of the electric current < j(mu)> generated by the created pairs. We illustrate how to implement the renormalization of the electric current for the Sauter pulse.  
  Address [Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC,Fac Fis, E-46100 Valencia, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435335000014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3623  
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Navarro-Salas, J. url  doi
openurl 
  Title Running couplings from adiabatic regularization Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 792 Issue Pages 81-85  
  Keywords Adiabatic renormalization; Running couplings; Semiclassical Maxwell-Einstein equations  
  Abstract We extend the adiabatic regularization method by introducing an arbitrary mass scale μin the construction of the subtraction terms. This allows us to obtain, in a very robust way, the running of the coupling constants by demanding mu-invariance of the effective semiclassical (Maxwell-Einstein) equations. In particular, we get the running of the electric charge of perturbative quantum electrodynamics. Furthermore, the method brings about a renormalization of the cosmological constant and the Newtonian gravitational constant. The running obtained for these dimensionful coupling constants has new relevant (non-logarithmic) contributions, not predicted by dimensional regularization.  
  Address [Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Ctr Mixto, Dept Fis Teor,CSIC, E-46100 Valencia, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466802100015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3997  
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Navarro-Salas, J. url  doi
openurl 
  Title Running gravitational couplings, decoupling, and curved spacetime renormalization Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 4 Pages 045021 - 6pp  
  Keywords  
  Abstract We propose to slightly generalize the DeWitt-Schwinger adiabatic renormalization subtractions in curved space to include an arbitrary renornialization mass scale mu. The new predicted running for the gravitational couplings are fully consistent with decoupling of heavy massive fields. This is a somewhat improvement with respect to the more standard treatment of minimal (DeWitt-Schwinger) subtractions via dimensional regularization. We also show how the vacuum metamorphosis model emerges from the running couplings.  
  Address [Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Fac Fis, CSIC, Ctr Mixto Univ Valencia,Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000563711800009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4517  
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Nadal-Gisbert, S.; Navarro-Salas, J. url  doi
openurl 
  Title Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 2 Pages 025003 - 8pp  
  Keywords  
  Abstract The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar field, all the beta function exhibit decoupling, including also the gravitational ones. For a quantized Dirac field, decoupling appears almost for all the beta functions. We obtain the anomalous result that the mass of the background scalar field does not decouple.  
  Address [Ferreiro, Antonio; Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000669563900006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4896  
Permanent link to this record
 

 
Author (down) Ferreiro, A.; Monin, S.; Torrenti, F. url  doi
openurl 
  Title Physical scale adiabatic regularization in cosmological spacetimes Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 4 Pages 045015 - 16pp  
  Keywords  
  Abstract We develop a new regularization method for the stress -energy tensor and the two -point function of free quantum scalar fields propagating in cosmological spacetimes. We proceed by extending the adiabatic regularization scheme with the introduction of two additional mass scales. By setting them to the order of the physical scale of the studied scenario, we obtain ultraviolet -regularized quantities that do not distort the power spectra amplitude at the infrared scales amplified by the expansion of the Universe. This is not ensured by the standard adiabatic approach. We also show how our proposed subtraction terms can be interpreted as a renormalization of coupling constants in the Einstein equations. We finally illustrate our proposed regularization method in two scenarios of cosmological interest: de Sitter inflation and geometric reheating.  
  Address [Ferreiro, Antonio] Univ Utrecht, Freudenthal Inst, NL-3584CC Utrecht, Netherlands, Email: antonio.ferreiro@ru.nl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001180335500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6015  
Permanent link to this record
 

 
Author (down) del Rio, A.; Ferreiro, A.; Navarro-Salas, J.; Torrenti, F. url  doi
openurl 
  Title Adiabatic regularization with a Yukawa interaction Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 10 Pages 105003 - 19pp  
  Keywords  
  Abstract We extend the adiabatic regularization method for an expanding universe to include the Yukawa interaction between quantized Dirac fermions and a homogeneous background scalar field. We give explicit expressions for the renormalized expectation values of the stress-energy tensor < T-mu nu > and the bilinear <(psi) over bar psi > in a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. These are basic ingredients in the semiclassical field equations of fermionic matter in curved spacetime interacting with a background scalar field. The ultraviolet subtracting terms of the adiabatic regularization can be naturally interpreted as coming from appropriate counterterms of the background fields. We fix the required covariant counterterms. To test our approach we determine the contribution of the Yukawa interaction to the conformal anomaly in the massless limit and show its consistency with the heat-kernel method using the effective action.  
  Address [del Rio, Adrian; Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000401447900006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3127  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva