toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative Ball-Chiu construction of the three-gluon vertex Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 9 Pages 094010 - 30pp  
  Keywords  
  Abstract We present the detailed derivation of the longitudinal part of the three-gluon vertex from the Slavnov-Taylor identities that it satisfies, by means of a nonperturbative implementation of the Ball-Chiu construction; the latter, in its original form, involves the inverse gluon propagator, the ghost dressing function, and certain form factors of the ghost-gluon kernel. The main conceptual subtlety that renders this endeavor nontrivial is the infrared finiteness of the gluon propagator, and the resulting need to separate the vertex into two pieces, one that is intimately connected with the emergence of a gluonic mass scale, and one that satisfies the original set of Slavnov-Taylor identities, but with the inverse gluon propagator replaced by its “kinetic” term. The longitudinal form factors obtained by this construction are presented for arbitrary Euclidean momenta, as well as special kinematic configurations, parametrized by a single momentum. A particularly preeminent feature of the components comprising the tree-level vertex is their considerable suppression for momenta below 1 GeV, and the appearance of the characteristic “zero-crossing” in the vicinity of 100-200 MeV. Special combinations of the form factors derived with this method are compared with the results of recent large-volume lattice simulations, and are found to capture faithfully the rather complicated curves formed by the data. A similar comparison with results obtained from Schwinger-Dyson equations reveals a fair overall agreement, but with appreciable differences at intermediate energies. A variety of issues related to the distribution of the pole terms responsible for the gluon mass generation are discussed in detail, and their impact on the structure of the transverse parts is elucidated. In addition, a brief account of several theoretical and phenomenological possibilities involving these newly acquired results is presented.  
  Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467734600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4010  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Gluon mass scale through nonlinearities and vertex interplay Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 9 Pages 094039 - 19pp  
  Keywords  
  Abstract We present a novel analysis of the gluon gap equation, where its full nonlinear structure is duly taken into account. In particular, while in previous treatments the linearization of this homogeneous integral equation introduced an indeterminacy in the scale of the corresponding mass, the current approach determines it uniquely, once the value of the gauge coupling at a given renormalization point is used as input. A crucial ingredient for this construction is the “kinetic term” of the gluon propagator, whose form is not obtained from the complicated equation governing its evolution, but is rather approximated by suitable initial Ansatze, which are subsequently improved by means of a systematic iterative procedure. The multiplicative renormalization of the central equation is carried out following an approximate method, which is extensively employed in the studies of the standard quark gap equation. This approach amounts to the effective substitution of the vertex renormalization constants by kinematically simplified form factors of the three- and four-gluon vertices. The resulting numerical interplay, exemplified by the infrared suppression of the three-gluon vertex and the mild enhancement of the four-gluon vertex, is instrumental for obtaining positive-definite and monotonically decreasing running gluon masses. The resulting gluon propagators, put together from the gluon masses and kinetic terms obtained with this method, match rather accurately the data obtained from large-volume lattice simulations.  
  Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000498877900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4208  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S. url  doi
openurl 
  Title Gluon propagator and three-gluon vertex with dynamical quarks Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 2 Pages 154 - 17pp  
  Keywords  
  Abstract We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic “zero crossing” deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.  
  Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000517203200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4314  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J. url  doi
openurl 
  Title Infrared facets of the three-gluon vertex Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 818 Issue Pages 136352 - 7pp  
  Keywords QCD; Three-gluon vertex; Lattice QCD; Schwinger-Dyson equations  
  Abstract We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The emerging picture of the underlying dynamics is thoroughly corroborated by the lattice results, both qualitatively as well as quantitatively.  
  Address [Aguilar, A. C.; Ferreira, M. N.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil, Email: jose.rodriguez@dfaie.uhu.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000662629500036 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4865  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Pinto-Gomez, F.; Roberts, C.D.; Rodriguez-Quintero, J. url  doi
openurl 
  Title Schwinger mechanism for gluons from lattice QCD Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 841 Issue Pages 137906 - 8pp  
  Keywords Continuum Schwinger function methods; Emergence of mass; Gluons; Lattice Schwinger function methods; Quantum chromodynamics; Schwinger mechanism of gauge boson mass; generation  
  Abstract Continuum and lattice analyses have revealed the existence of a mass-scale in the gluon two-point Schwinger function. It has long been conjectured that this expresses the action of a Schwinger mechanism for gauge boson mass generation in quantum chromodynamics (QCD). For such to be true, it is necessary and sufficient that a dynamically-generated, massless, colour-carrying, scalar gluon+gluon correlation emerges as a feature of the dressed three-gluon vertex. Working with results on elementary Schwinger functions obtained via the numerical simulation of lattice-regularised QCD, we establish with an extremely high level of confidence that just such a feature appears; hence, confirm the conjectured origin of the gluon mass scale.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil, Email: cristina.aguilar@unicamp.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000984221700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5530  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Cardona, J.C.; Ferreira, M.N.; Papavassiliou, J. url  doi
openurl 
  Title Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 1 Pages 014029 - 29pp  
  Keywords  
  Abstract We determine the non-Abelian version of the four nontransverse form factors of the quark-gluon vertex, using exact expressions derived from the Slavnov-Taylor identity that this vertex satisfies. In addition to the quark and ghost propagators, a key ingredient of the present approach is the quark-ghost scattering kernel, which is computed within the one-loop dressed approximation. The vertex form factors obtained from this procedure are evaluated for arbitrary Euclidean momenta, and display features not captured by the well-known Ball-Chiu vertex, deduced from the Abelian (ghost-free) Ward identity. Particularly interesting in this analysis is the so-called soft-gluon limit, which, unlike other kinematic configurations considered, is especially sensitive to the approximations employed for the vertex entering in the quark-ghost scattering kernel, and may even be affected by a subtle numerical instability. As an elementary application of the results obtained, we evaluate and compare certain renormalization-point-independent combinations, which contribute to the interaction kernels appearing in the standard quark gap and Bethe-Salpeter equations. In doing so, even though all form factors of the quark-gluon vertex, and in particular the transverse ones which are unconstrained by our procedure, enter nontrivially in the aforementioned kernels, only the contribution of a single form factor, corresponding to the classical (tree-level) tensor, will be considered.  
  Address [Aguilar, A. C.; Cardona, J. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406540300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3232  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Cardona, J.C.; Ferreira, M.N.; Papavassiliou, J. url  doi
openurl 
  Title Quark gap equation with non-Abelian Ball-Chiu vertex Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 1 Pages 014002 - 15pp  
  Keywords  
  Abstract The full quark-gluon vertex is a crucial ingredient for the dynamical generation of a constituent quark mass from the standard quark gap equation, and its nontransverse part may be determined exactly from the nonlinear Slav nov-Taylor identity that it satisfies. The resulting expression involves not only the quark propagator, but also the ghost dressing function and the quark-ghost kernel, and constitutes the non-abelian extension of the so-called “Ball-Chiu vertex,” known from QED. In the present work we carry out a detailed study of the impact of this vertex on the gap equation and the quark masses generated from it, putting particular emphasis on the contributions directly related with the ghost sector of the theory, and especially the quark-ghost kernel. In particular, we set up and solve the coupled system of six equations that determine the four form factors of the latter kernel and the two typical Dirac structures composing the quark propagator. Due to the incomplete implementation of the multiplicative renormalizability at the level of the gap equation, the correct anomalous dimension of the quark mass is recovered through the inclusion of a certain function, whose ultraviolet behavior is fixed, but its infrared completion is unknown; three particular Ansatze for this function are considered, and their effect on the quark mass and the pion decay constant is explored. The main results of this study indicate that the numerical impact of the quark-ghost kernel is considerable; the transition from a tree-level kernel to the one computed hem leads to a 20% increase in the value of the quark mass at the origin. Particularly interesting is the contribution of the fourth Ball-Chiu form factor, which, contrary to the Abelian case, is nonvanishing, and accounts for 10% of the total constituent quark mass.  
  Address [Aguilar, A. C.; Cardona, J. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436941600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3642  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title QCD effective charges from lattice data Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 002 - 24pp  
  Keywords Nonperturbative Effects; QCD  
  Abstract We use recent lattice data on the gluon and ghost propagators, as well as the Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular definitions of the QCD effective charge, one based on the pinch technique construction, and one obtained from the standard ghost-gluon vertex. The construction relies crucially on the definition of two dimensionful quantities, which are invariant under the renormalization group, and are built out of very particular combinations of the aforementioned Green's functions. The main non-perturbative feature of both effective charges, encoded in the infrared finiteness of the gluon propagator and ghost dressing function used in their definition, is the freezing at a common finite (non-vanishing) value, in agreement with a plethora of theoretical and phenomenological expectations. We discuss the sizable discrepancy between the freezing values obtained from the present lattice analysis and the corresponding estimates derived from several phenomenological studies, and attribute its origin to the difference in the gauges employed. A particular toy calculation suggests that the modifications induced to the non-perturbative gluon propagator by the gauge choice may indeed account for the observed deviation of the freezing values.  
  Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000281504500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 384  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative gluon and ghost propagators for d=3 Yang-Mills theory Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 12 Pages 125025 - 13pp  
  Keywords  
  Abstract We study a manifestly gauge-invariant set of Schwinger-Dyson equations to determine the non-perturbative dynamics of the gluon and ghost propagators in d = 3 Yang-Mills theory. The use of the well-known Schwinger mechanism, in the Landau gauge leads to the dynamical generation of a mass for the gauge boson (gluon in d = 3), which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained from the numerical solution of these nonperturbative equations are in very good agreement with the results of SU(2) lattice simulations.  
  Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279165900006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 422  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Dynamical equation of the effective gluon mass Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 8 Pages 085026 - 19pp  
  Keywords  
  Abstract In this article, we derive the integral equation that controls the momentum dependence of the effective gluon mass in the Landau gauge. This is accomplished by means of a well-defined separation of the corresponding “one-loop dressed” Schwinger-Dyson equation into two distinct contributions, one associated with the mass and one with the standard kinetic part of the gluon. The entire construction relies on the existence of a longitudinally coupled vertex of nonperturbative origin, which enforces gauge invariance in the presence of a dynamical mass. The specific structure of the resulting mass equation, supplemented by the additional requirement of a positive-definite gluon mass, imposes a rather stringent constraint on the derivative of the gluonic dressing function, which is comfortably satisfied by the large-volume lattice data for the gluon propagator, both for SU(2) and SU(3). The numerical treatment of the mass equation, under some simplifying assumptions, is presented for the aforementioned gauge groups, giving rise to a gluon mass that is a nonmonotonic function of the momentum. Various theoretical improvements and possible future directions are briefly discussed.  
  Address [Aguilar, AC] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: Arlene.Aguilar@ufabc.edu.br  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296889200007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 814  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva