toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title QCD effective charge from the three-gluon vertex of the background-field method Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 12 Pages 125026 - 10pp  
  Keywords  
  Abstract In this article we study in detail the prospects of determining the infrared finite QCD effective charge from a special kinematic limit of the vertex function corresponding to three background gluons. This particular Green's function satisfies a QED-like Ward identity, relating it to the gluon propagator, with no reference to the ghost sector. Consequently, its longitudinal form factors may be expressed entirely in terms of the corresponding gluon wave function, whose inverse is proportional to the effective charge. After reviewing certain important theoretical properties, we consider a typical lattice quantity involving this vertex, and derive its exact dependence on the various form factors, for arbitrary momenta. We then focus on the particular momentum configuration that eliminates any dependence on the (unknown) transverse form factors, projecting out only the desired quantity. A preliminary numerical analysis indicates that the effective charge is relatively insensitive to the numerical uncertainties that may afflict future simulations of the aforementioned lattice quantity. The numerical difficulties associated with a parallel determination of the dynamical gluon mass are briefly discussed.  
  Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, Trento, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320609200011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1490  
Permanent link to this record
 

 
Author (down) Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative study of the four gluon vertex Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 059 - 32pp  
  Keywords Nonperturbative Effects; QCD; Confinement  
  Abstract In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where “one-loop” diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.  
  Address [Binosi, D.; Ibanez, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342215400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1954  
Permanent link to this record
 

 
Author (down) Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D. url  doi
openurl 
  Title Bridging a gap between continuum-QCD and ab initio predictions of hadron observables Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 742 Issue Pages 183-188  
  Keywords Dyson-Schwinger equations; Confinement; Dynamical chiral symmetry breaking; Fragmentation; Gribov copies  
  Abstract Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initioprediction of bound-state properties.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: cdroberts@anl.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350555900026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2156  
Permanent link to this record
 

 
Author (down) Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. url  doi
openurl 
  Title Symmetry preserving truncations of the gap and Bethe-Salpeter equations Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 9 Pages 096010 - 7pp  
  Keywords  
  Abstract Ward-Green-Takahashi (WGT) identities play a crucial role in hadron physics, e.g. imposing stringent relationships between the kernels of the one-and two-body problems, which must be preserved in any veracious treatment of mesons as bound states. In this connection, one may view the dressed gluon-quark vertex, Gamma(alpha)(mu), as fundamental. We use a novel representation of Gamma(alpha)(mu), in terms of the gluon-quark scattering matrix, to develop a method capable of elucidating the unique quark-antiquark Bethe-Salpeter kernel, K, that is symmetry consistent with a given quark gap equation. A strength of the scheme is its ability to expose and capitalize on graphic symmetries within the kernels. This is displayed in an analysis that reveals the origin of H-diagrams in K, which are two-particle-irreducible contributions, generated as two-loop diagrams involving the three-gluon vertex, that cannot be absorbed as a dressing of Gamma(alpha)(mu) in a Bethe-Salpeter kernel nor expressed as a member of the class of crossed-box diagrams. Thus, there are no general circumstances under which the WGT identities essential for a valid description of mesons can be preserved by a Bethe-Salpeter kernel obtained simply by dressing both gluon-quark vertices in a ladderlike truncation; and, moreover, adding any number of similarly dressed crossed-box diagrams cannot improve the situation.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376641000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2689  
Permanent link to this record
 

 
Author (down) Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. url  doi
openurl 
  Title Natural constraints on the gluon-quark vertex Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 031501 - 7pp  
  Keywords  
  Abstract In principle, the strong-interaction sector of the standard model is characterized by a unique renormalization-group-invariant (RGI) running interaction and a unique form for the dressed-gluonquark vertex, Gamma mu; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansatze for Gamma mu. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Evidently, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansatze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393507500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2953  
Permanent link to this record
 

 
Author (down) Binosi, D.; Chang, L.; Ding, M.H.; Gao, F.; Papavassiliou, J.; Roberts, C.D. url  doi
openurl 
  Title Distribution amplitudes of heavy-light mesons Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 790 Issue Pages 257-262  
  Keywords B-meson decays; Heavy-light mesons; Nonperturbative continuum methods in quantum field theory; Parton distribution amplitudes; Quantum chromodynamics  
  Abstract A symmetry-preserving approach to the continuum bound-state problem in quantum field theory is used to calculate the masses, leptonic decay constants and light-front distribution amplitudes of empirically accessible heavy-light mesons. The inverse moment of the B-meson distribution is particularly important in treatments of exclusive B-decays using effective field theory and the factorisation formalism; and its value is therefore computed: lambda(B) = (zeta = 2GeV) = 0.54(3) GeV. As an example and in anticipation of precision measurements at new-generation B-factories, the branching fraction for the rare B -> gamma (E-gamma)l nu(l) radiative decay is also calculated, retaining 1/m(B)(2), and 1/E-gamma(2) corrections to the differential decay width, with the result Gamma(B -> gamma l nu l) /Gamma(B) = 0.47 (15) on E-gamma > 1.5 GeV.  
  Address [Binosi, Daniele; Ding, Minghui] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460118200030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3934  
Permanent link to this record
 

 
Author (down) Athenodorou, A.; Binosi, D.; Boucaud, P.; De Soto, F.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S. url  doi
openurl 
  Title On the zero crossing of the three-gluon vertex Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 761 Issue Pages 444-449  
  Keywords Lattice simulations; Three-gluon vertex; Zero crossing; Schwinger-Dyson equations  
  Abstract We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.  
  Address [Athenodorou, A.] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus, Email: binosi@ectstar.eu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384469900063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2939  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Papavassiliou, J. url  doi
openurl 
  Title Chiral symmetry breaking with lattice propagators Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 1 Pages 014013 - 17pp  
  Keywords  
  Abstract We study chiral symmetry breaking using the standard gap equation, supplemented with the infrared-finite gluon propagator and ghost dressing function obtained from large-volume lattice simulations. One of the most important ingredients of this analysis is the non-Abelian quark-gluon vertex, which controls the way the ghost sector enters into the gap equation. Specifically, this vertex introduces a numerically crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. This latter quantity satisfies its own, previously unexplored, dynamical equation, which may be decomposed into individual integral equations for its various form factors. In particular, the scalar form factor is obtained from an approximate version of the “one-loop dressed” integral equation, and its numerical impact turns out to be rather considerable. The detailed numerical analysis of the resulting gap equation reveals that the constituent quark mass obtained is about 300 MeV, while fermions in the adjoint representation acquire a mass in the range of (750-962) MeV.  
  Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: Arlene.Aguilar@ufabc.edu.br  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286765100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 584  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Papavassiliou, J. url  doi
openurl 
  Title Gluon mass generation without seagull divergences Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 3 Pages 034003 - 19pp  
  Keywords  
  Abstract Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one for the gluon mass. This system of integral equations has a unique solution, which unambiguously determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon mass displays power-law running in the ultraviolet, in agreement with earlier considerations.  
  Address [Aguilar, Arlene C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275069000024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 493  
Permanent link to this record
 

 
Author (down) Aguilar, A.C.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title Ghost propagator and ghost-gluon vertex from Schwinger-Dyson equations Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 11 Pages 114020 - 14pp  
  Keywords  
  Abstract We study an approximate version of the Schwinger-Dyson equation that controls the nonperturbative behavior of the ghost-gluon vertex in the Landau gauge. In particular, we focus on the form factor that enters in the dynamical equation for the ghost dressing function, in the same gauge, and derive its integral equation, in the “one-loop dressed” approximation. We consider two special kinematic configurations, which simplify the momentum dependence of the unknown quantity; in particular, we study the soft gluon case and the well-known Taylor limit. When coupled with the Schwinger-Dyson equation of the ghost dressing function, the contribution of this form factor provides considerable support to the relevant integral kernel. As a consequence, the solution of this coupled system of integral equations furnishes a ghost dressing function that reproduces the standard lattice results rather accurately, without the need to artificially increase the value of the gauge coupling.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321001100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1508  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva