toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Brook, N.H.; Castillo Garcia, L.; Conneely, T.M.; Cussans, D.; van Dijk, M.W.U.; Fohl, K.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Hancock, T.H.; Harnew, N.; Lapington, J.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcia, A. url  doi
openurl 
  Title Testbeam studies of a TORCH prototype detector Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 908 Issue Pages 256-268  
  Keywords Cherenkov radiation; Particle identification; TORCH; MCP-PMT  
  Abstract TORCH is a novel time-of-flight detector that has been developed to provide charged-particle identification between 2 and 10 GeV/c momentum. TORCH combines arrival times from multiple Cherenkov photons produced within a 10 mm-thick quartz radiator plate, to achieve a 15 ps time-of-flight resolution per incident particle. A customised Micro-Channel Plate photomultiplier tube (MCP-PMT) and associated readout system utilises an innovative charge-sharing technique between adjacent pixels to obtain the necessary 70 ps time resolution of each Cherenkov photon. A five-year R&D programme has been undertaken, culminating in the construction of a small-scale prototype TORCH module. In testbeams at CERN, this prototype operated successfully with customised electronics and readout system. A full analysis chain has been developed to reconstruct the data and to calibrate the detector. Results are compared to those using a commercial Planacon MCP-PMT, and single photon resolutions approaching 80 ps have been achieved. The photon counting efficiency was found to be in reasonable agreement with a GEANT4 Monte Carlo simulation of the detector. The small-scale demonstrator is a precursor to a full-scale TORCH module (with a radiator plate of 660 x 1250 x 10 mm(3)), which is currently under construction.  
  Address [Brook, N. H.; Cussans, D.; Garcia, A. Ros] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England, Email: mvandijk@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446864600033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3760  
Permanent link to this record
 

 
Author (down) Briz, J.A.; Nerio, A.N.; Ballesteros, C.; Borge, M.J.G.; Martinez, P.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Maj, A.; Olko, P.; Parol, W.; Pedracka, A.; Sowicki, B.; Zieblinski, M.; Nacher, E. url  doi
openurl 
  Title Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators Type Journal Article
  Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 69 Issue 4 Pages 696-702  
  Keywords LaBr3; particle tracking; proton computed tomography (pCT); proton radiograph; proton therapy; scintillation detectors; silicon detectors  
  Abstract Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.  
  Address [Briz, J. A.; Nerio, A. N.; Ballesteros, C.; Borge, M. J. G.; Martinez, P.; Perea, A.; Tavora, V. G.; Tengblad, O.] Inst Estruct Mat CSIC, Madrid 28006, Spain, Email: jose.briz@csic.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000803113800017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5245  
Permanent link to this record
 

 
Author (down) Borsato, M. et al; Zurita, J.; Henry, L.; Jashal, B.K.; Oyanguren, A. url  doi
openurl 
  Title Unleashing the full power of LHCb to probe stealth new physics Type Journal Article
  Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 85 Issue 2 Pages 024201 - 45pp  
  Keywords LHCb; stealth physics; BSM physics; hidden sectors; long-lived particles; dark matter  
  Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.  
  Address [Borsato, M.] Heidelberg Univ, Phys Inst, Heidelberg, Germany, Email: xabier.cid.vidal@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762056700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5151  
Permanent link to this record
 

 
Author (down) Boronat, M.; Marinas, C.; Frey, A.; Garcia, I.; Schwenker, B.; Vos, M.; Wilk, F. url  doi
openurl 
  Title Physical Limitations to the Spatial Resolution of Solid-State Detectors Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 1 Pages 381-386  
  Keywords Charged particle tracking; silicon detectors; solid state devices  
  Abstract In this paper we explore the effect of delta-ray emission and fluctuations in the signal deposition on the detection of charged particles in silicon-based detectors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.  
  Address [Boronat, M.; Garcia, I.; Vos, M.] IFIC UVEG CSIC, E-46980 Valencia, Spain, Email: marcel.vos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000349672900025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2140  
Permanent link to this record
 

 
Author (down) Bonilla, J. et al; Vos, M. url  doi
openurl 
  Title Jets and Jet Substructure at Future Colliders Type Journal Article
  Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 10 Issue Pages 897719 - 17pp  
  Keywords jets; jet substructure; collider; artificial intelligence; machine learning; snowmass; top quark; Higgs boson  
  Abstract Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.  
  Address [Bonilla, Johan; Erbacher, Robin] Univ Calif, Dept Phys & Astron, Davis, CA USA, Email: bpnachman@lbl.gov;  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000822618100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5464  
Permanent link to this record
 

 
Author (down) Blennow, M.; Fernandez-Martinez, E.; Mena, O.; Redondo, J.; Serra, E.P. url  doi
openurl 
  Title Asymmetric Dark Matter and Dark Radiation Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 022 - 23pp  
  Keywords dark matter theory; particle physics – cosmology connection; physics of the early universe  
  Abstract Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.  
  Address [Blennow, Mattias] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: Mattias.Blennow@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307079600033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1165  
Permanent link to this record
 

 
Author (down) Black, K.M. et al; Zurita, J. url  doi
openurl 
  Title Muon Collider Forum report Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages T02015 - 95pp  
  Keywords Accelerator Applications; Accelerator Subsystems and Technologies; Instrumentation for particle accelerators and storage rings- high energy (linear accelerators, synchrotrons); Large detector systems for particle and astroparticle physics  
  Abstract A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.  
  Address [Black, K. M.; Bose, T.; Dasu, S.; Everaerts, P.; Jia, H.; Lomte, S.; Pinna, D.; Venkatasubramanian, N.; Vuosalo, C.] Univ Wisconsin Madison, Madison, WI USA, Email: sergo@fnal.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185309300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6048  
Permanent link to this record
 

 
Author (down) Binosi, D.; Chang, L.; Ding, M.H.; Gao, F.; Papavassiliou, J.; Roberts, C.D. url  doi
openurl 
  Title Distribution amplitudes of heavy-light mesons Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 790 Issue Pages 257-262  
  Keywords B-meson decays; Heavy-light mesons; Nonperturbative continuum methods in quantum field theory; Parton distribution amplitudes; Quantum chromodynamics  
  Abstract A symmetry-preserving approach to the continuum bound-state problem in quantum field theory is used to calculate the masses, leptonic decay constants and light-front distribution amplitudes of empirically accessible heavy-light mesons. The inverse moment of the B-meson distribution is particularly important in treatments of exclusive B-decays using effective field theory and the factorisation formalism; and its value is therefore computed: lambda(B) = (zeta = 2GeV) = 0.54(3) GeV. As an example and in anticipation of precision measurements at new-generation B-factories, the branching fraction for the rare B -> gamma (E-gamma)l nu(l) radiative decay is also calculated, retaining 1/m(B)(2), and 1/E-gamma(2) corrections to the differential decay width, with the result Gamma(B -> gamma l nu l) /Gamma(B) = 0.47 (15) on E-gamma > 1.5 GeV.  
  Address [Binosi, Daniele; Ding, Minghui] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460118200030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3934  
Permanent link to this record
 

 
Author (down) Bernigaud, J.; Blanke, M.; de Medeiros Varzielas, I.; Talbert, J.; Zurita, J. url  doi
openurl 
  Title LHC signatures of tau-flavoured vector leptoquarks Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 127 - 31pp  
  Keywords New Light Particles; Specific BSM Phenomenology; Flavour Symmetries; Theories of Flavour  
  Abstract We consider the phenomenological signatures of Simplified Models of Flavourful Leptoquarks, whose Beyond-the-Standard Model (SM) couplings to fermion generations occur via textures that are well motivated from a broad class of ultraviolet flavour models (which we briefly review). We place particular emphasis on the study of the vector leptoquark Delta(mu) with assignments (3, 1, 2/3) under the SM's gauge symmetry, SU(3)(C) x SU(2)(L) x U(1)(Y), which has the tantalising possibility of explaining both R-K(*) and R-D(*) anomalies. Upon performing global likelihood scans of the leptoquark's coupling parameter space, focusing in particular on models with tree-level couplings to a single charged lepton species, we then provide confidence intervals and benchmark points preferred by low(er)-energy flavour data. Finally, we use these constraints to further evaluate the (promising) Large Hadron Collider (LHC) detection prospects of pairs of tau-flavoured Delta(mu), through their distinct (a)symmetric decay channels. Namely, we consider direct third-generation leptoquark and jets plus missing-energy searches at the LHC, which we find to be complementary. Depending on the simplified model under consideration, the direct searches constrain the Delta(mu), mass up to 1500-1770 GeV when the branching fraction of Delta(mu), is entirely to third-generation quarks (but are significantly reduced with decreased branching ratios to the third generation), whereas the missing-energy searches constrain the mass up to 1150-1700 GeV while being largely insensitive to the third-generation branching fraction.  
  Address [Bernigaud, Jordan; Blanke, Monika] Karlsruhe Inst Technol, Inst Astroparticle Phys IAP, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany, Email: jordan.bernigaud@kit.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000840379400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5329  
Permanent link to this record
 

 
Author (down) Bennett, J.J.; Buldgen, G.; de Salas, P.F.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y.Y.Y. url  doi
openurl 
  Title Towards a precision calculation of the effective number of neutrinos N-eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 073 - 33pp  
  Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe  
  Abstract We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, N-eff(SM), that quantifies the cosmological neutrinoto-photon energy densities. The calculation takes into account neutrino flavour oscillations, finite-temperature effects in the quantum electrodynamics plasma to O(e(3)), where e is the elementary electric charge, and a full evaluation of the neutrino-neutrino collision integral. We provide furthermore a detailed assessment of the uncertainties in the benchmark N(eff)(SM )value, through testing the value's dependence on (i) optional approximate modelling of the weak collision integrals, (ii) measurement errors in the physical parameters of the weak sector, and (iii) numerical convergence, particularly in relation to momentum discretisation. Our new, recommended standard-model benchmark is N-eff(SM) 3.0440 +/- 0.0002, where the nominal uncertainty is attributed predominantly to errors incurred in the numerical solution procedure (vertical bar delta N-eff vertical bar similar to 10(-4)), augmented by measurement errors in the solar mixing angle sin(2) theta(12) (vertical bar delta N-eff vertical bar similar to 10(-4)).  
  Address [Bennett, Jack J.; Wong, Yvonne Y. Y.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: j.j.bennett@unsw.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647827600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4827  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva