|   | 
Details
   web
Records
Author (down) Hirn, J.; Garcia, J.E.; Montesinos-Navarro, A.; Sanchez-Martin, R.; Sanz, V.; Verdu, M.
Title A deep Generative Artificial Intelligence system to predict species coexistence patterns Type Journal Article
Year 2022 Publication Methods in Ecology and Evolution Abbreviated Journal Methods Ecol. Evol.
Volume 13 Issue Pages 1052-1061
Keywords artificial intelligence; direct interactions; generative adversarial networks; indirect interactions; species coexistence; variational AutoEncoders
Abstract Predicting coexistence patterns is a current challenge to understand diversity maintenance, especially in rich communities where these patterns' complexity is magnified through indirect interactions that prevent their approximation with classical experimental approaches. We explore cutting-edge Machine Learning techniques called Generative Artificial Intelligence (GenAI) to predict species coexistence patterns in vegetation patches, training generative adversarial networks (GAN) and variational AutoEncoders (VAE) that are then used to unravel some of the mechanisms behind community assemblage. The GAN accurately reproduces real patches' species composition and plant species' affinity to different soil types, and the VAE also reaches a high level of accuracy, above 99%. Using the artificially generated patches, we found that high-order interactions tend to suppress the positive effects of low-order interactions. Finally, by reconstructing successional trajectories, we could identify the pioneer species with larger potential to generate a high diversity of distinct patches in terms of species composition. Understanding the complexity of species coexistence patterns in diverse ecological communities requires new approaches beyond heuristic rules. Generative Artificial Intelligence can be a powerful tool to this end as it allows to overcome the inherent dimensionality of this challenge.
Address [Hirn, Johannes; Enrique Garcia, Jose; Sanz, Veronica] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: miguel.verdu@ext.uv.es
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-210x ISBN Medium
Area Expedition Conference
Notes WOS:000765239700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5155
Permanent link to this record
 

 
Author (down) Gomez Ambrosio, R.; ter Hoeve, J.; Madigan, M.; Rojo, J.; Sanz, V.
Title Unbinned multivariate observables for global SMEFT analyses from machine learning Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 033 - 66pp
Keywords SMEFT; Higgs Properties
Abstract Theoretical interpretations of particle physics data, such as the determination of the Wilson coefficients of the Standard Model Effective Field Theory (SMEFT), often involve the inference of multiple parameters from a global dataset. Optimizing such interpretations requires the identification of observables that exhibit the highest possible sensitivity to the underlying theory parameters. In this work we develop a flexible open source frame-work, ML4EFT, enabling the integration of unbinned multivariate observables into global SMEFT fits. As compared to traditional measurements, such observables enhance the sensitivity to the theory parameters by preventing the information loss incurred when binning in a subset of final-state kinematic variables. Our strategy combines machine learning regression and classification techniques to parameterize high-dimensional likelihood ratios, using the Monte Carlo replica method to estimate and propagate methodological uncertainties. As a proof of concept we construct unbinned multivariate observables for top-quark pair and Higgs+Z production at the LHC, demonstrate their impact on the SMEFT parameter space as compared to binned measurements, and study the improved constraints associated to multivariate inputs. Since the number of neural networks to be trained scales quadratically with the number of parameters and can be fully parallelized, the ML4EFT framework is well-suited to construct unbinned multivariate observables which depend on up to tens of EFT coefficients, as required in global fits.
Address [Ambrosio, Raquel Gomez] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Milan, Italy, Email: raquel.gomezambrosio@unito.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000946004000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5501
Permanent link to this record
 

 
Author (down) Garcia Navarro, J.E.; Fernandez-Prieto, L.M.; Villaseñor, A.; Sanz, V.; Ammirati, J.B.; Diaz Suarez, E.A.; Garcia, C.
Title Performance of Deep Learning Pickers in Routine Network Processing Applications Type Journal Article
Year 2022 Publication Seismological Research Letters Abbreviated Journal Seismol. Res. Lett.
Volume 93 Issue Pages 2529-2542
Keywords
Abstract Picking arrival times of P and S phases is a fundamental and time‐consuming task for the routine processing of seismic data acquired by permanent and temporary networks. A large number of automatic pickers have been developed, but to perform well they often require the tuning of multiple parameters to adapt them to each dataset. Despite the great advance in techniques, some problems remain, such as the difficulty to accurately pick S waves and earthquake recordings with a low signal‐to‐noise ratio. Recently, phase pickers based on deep learning (DL) have shown great potential for event identification and arrival‐time picking. However, the general adoption of these methods for the routine processing of monitoring networks has been held back by factors such as the availability of well‐documented software, computational resources, and a gap in knowledge of these methods. In this study, we evaluate recent available DL pickers for earthquake data, comparing the performance of several neural network architectures. We test the selected pickers using three datasets with different characteristics. We found that the analyzed DL pickers (generalized phase detection, PhaseNet, and EQTransformer) perform well in the three tested cases. They are very efficient at ignoring large‐amplitude transient noise and at picking S waves, a task that is often difficult even for experienced analysts. Nevertheless, the performance of the analyzed DL pickers varies widely in terms of sensitivity and false discovery rate, with some pickers missing a significant percentage of true picks and others producing a large number of false positives. There are also variations in run time between DL pickers, with some of them requiring significant resources to process large datasets. In spite of these drawbacks, we show that DL pickers can be used efficiently to process large seismic datasets and obtain results comparable or better than current standard procedures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5500
Permanent link to this record
 

 
Author (down) Folgado, M.G.; Sanz, V.
Title On the Interpretation of Nonresonant Phenomena at Colliders Type Journal Article
Year 2021 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2021 Issue Pages 2573471 - 12pp
Keywords
Abstract With null results in resonance searches at the LHC, the physics potential focus is now shifting towards the interpretation of nonresonant phenomena. An example of such shift is the increased popularity of the EFT programme. We can embark on such programme owing to the good integrated luminosity and an excellent understanding of the detectors, which will allow these searches to become more intense as the LHC continues. In this paper, we provide a framework to perform this interpretation in terms of a diverse set of scenarios, including (1) generic heavy new physics described at low energies in terms of a derivative expansion, such as in the EFT approach; (2) very light particles with derivative couplings, such as axions or other light pseudo-Goldstone bosons; and (3) the effect of a quasicontinuum of resonances, which can come from a number of strongly coupled theories, extradimensional models, clockwork set-ups, and their deconstructed cousins. These scenarios are not equivalent despite all nonresonance, although the matching among some of them is possible, and we provide it in this paper.
Address [Folgado, Miguel G.; Sanz, Veronica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Valencia, Spain, Email: migarfol@ific.uv.es
Corporate Author Thesis
Publisher Hindawi Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000636258800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4775
Permanent link to this record
 

 
Author (down) Folgado, M.G.; Sanz, V.
Title Exploring the political pulse of a country using data science tools Type Journal Article
Year 2022 Publication Journal of Computational Social Science Abbreviated Journal J. Comput. Soc. Sci.
Volume 5 Issue Pages 987-1000
Keywords Politics; Spain; Sentiment analysis; Artificial Intelligence; Machine learning; Neural networks; Natural Language Processing (NLP)
Abstract In this paper we illustrate the use of Data Science techniques to analyse complex human communication. In particular, we consider tweets from leaders of political parties as a dynamical proxy to political programmes and ideas. We also study the temporal evolution of their contents as a reaction to specific events. We analyse levels of positive and negative sentiment in the tweets using new tools adapted to social media. We also train a Fully-Connected Neural Network (FCNN) to recognise the political affiliation of a tweet. The FCNN is able to predict the origin of the tweet with a precision in the range of 71-75%, and the political leaning (left or right) with a precision of around 90%. This study is meant to be viewed as an example of how to use Twitter data and different types of Data Science tools for a political analysis.
Address [Folgado, Miguel G.; Sanz, Veronica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia 46980, Spain, Email: migarfol@upvnet.upv.es;
Corporate Author Thesis
Publisher Springernature Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2432-2717 ISBN Medium
Area Expedition Conference
Notes WOS:000742263500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5077
Permanent link to this record