toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Wang, Y.F.; Yao, D.L.; Zheng, H.Q. url  doi
openurl 
  Title On the existence of N*(890) resonance in S-11 channel of N scatterings Type Journal Article
  Year 2019 Publication Frontiers of Physics Abbreviated Journal Front. Phys.  
  Volume 14 Issue 2 Pages 24501 - 6pp  
  Keywords dispersion relations; N scatterings; nucleon resonance  
  Abstract Low-energy partial-wave N scattering data is reexamined with the help of the production representation of partial-wave S matrix, where branch cuts and poles are thoroughly under consideration. The left-hand cut contribution to the phase shift is determined, with controlled systematic error estimates, by using the results of O(p(3)) chiral perturbative amplitudes obtained in the extended-onmass- shell scheme. In S-11 and P-11 channels, severe discrepancies are observed between the phase shift data and the sum of all known contributions. Statistically satisfactory fits to the data can only be achieved by adding extra poles in the two channels. We find that a S-11 resonance pole locates at zr = (0:895-0:081)-(0:164-0:023)i GeV, on the complex s-plane. On the other hand, a P-11 virtual pole, as an accompanying partner of the nucleon bound-state pole, locates atzv = (0:966-0:018) GeV, slightly above the nucleon pole on the real axis below threshold. Physical origin of the two newly established poles is explored to the best of our knowledge. It is emphasized that the O(p(3)) calculation greatly improves the fit quality comparing with the previous O(p(2)) one.  
  Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: deliang.yao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Higher Education Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454564100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3857  
Permanent link to this record
 

 
Author (down) Wang, Y.F.; Yao, D.L.; Zheng, H.Q. url  doi
openurl 
  Title New insights on low energy pi N scattering amplitudes: comprehensive analyses at O (p(3)) level Type Journal Article
  Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 43 Issue 6 Pages 064110 - 22pp  
  Keywords dispersion relations; pion-nucleon scattering; chiral perturbation theory  
  Abstract A production representation of partial-wave S matrix is utilized to construct low-energy elastic pion-nucleon scattering amplitudes from cuts and poles on complex Riemann sheets. Among them, the contribution of left-hand cuts is estimated using the O (p(3)) results obtained in covariant baryon chiral perturbation theory within the extendedon-nass-shell scheme. By fitting to data on partial-wave phase shifts, it is indicated that the existences of hidden poles in S-11 and P-11 channels, as conjectured in our previous paper [Eur. Phys. J. C, 78(7): 543 (2018)], are firmly established. Specifically, the pole mass of the S-11 hidden resonance is determined to be (895 +/- 81)-(164 +/- 23)i MeV, whereas, the virtual pole in the P-11 channel locates at (966 +/- 18) MeV. It is found that analyses at the O (p(3)) level improves significantly the fit quality, comparing with the previous O (p(2)) one. Quantitative studies with cautious physical discussions are also conducted for the other S- and P-wave channels.  
  Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: yaodeliang@pku.edu.cn  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468501700013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4020  
Permanent link to this record
 

 
Author (down) Wang, E.; Xie, J.J.; Geng, L.S.; Oset, E. url  doi
openurl 
  Title The X(4140) and X(4160) resonances in the e(+)e(-) -> gamma J/psi phi reaction Type Journal Article
  Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 43 Issue 11 Pages 113101 - 10pp  
  Keywords X(4140); J/psi phi scattering; heavy flavor hadrons; X(4160)  
  Abstract We investigate the J/psi phi invariant mass distribution in the e(+)e(-) -> gamma J/psi phi reaction at a center-of-mass energy of root s = 4.6 GeV measured by the BESIII collaboration, which concluded that no significant signals were observed for e(+)e(-) -> gamma J/psi phi because of the low statistics. We show, however, that the J/psi phi invariant mass distribution is compatible with the existence of the X(4140) state, appearing as a peak, and a strong cusp structure at the D-s*(D) over bar (s)* threshold, resulting from the molecular nature of the X(4160) state, which provides a substantial contribution to the reaction. This is consistent with our previous analysis of the B+ -> J psi phi K+ decay measured by the LHCb collaboration. We strongly suggest further measurements of this process with more statistics to clarify the nature of the X(4140) and X(4160) resonances.  
  Address [Wang, En; Xie, Ju-Jun; Geng, Li-Sheng] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Henan, Peoples R China, Email: lisheng.geng@buaa.edu.cn  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000493109100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4187  
Permanent link to this record
 

 
Author (down) Sajjad Athar, M.; Ruiz Simo, I.; Vicente Vacas, M.J. url  doi
openurl 
  Title Nuclear medium modification of the F2(x, Q^2) structure function Type Journal Article
  Year 2011 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 857 Issue 1 Pages 29-41  
  Keywords Structure function; Nuclear medium effects; Deep inelastic scattering; Local density approximation  
  Abstract We study the nuclear effects in the electromagnetic structure function F-2(x, Q(2)) in the deep inelastic lepton nucleus scattering process by taking into account Fermi motion, binding, pion and rho meson cloud contributions. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. The ratios R-F2(A) (x, Q(2)) = 2F(2)(A)(x, Q(2))/AF(2)(D)(x, Q(2)) are obtained and compared with recent JLab results for light nuclei with special attention to the slope of the x distributions. This magnitude shows a non-trivial A dependence and it is insensitive to possible normalization uncertainties. The results have also been compared with some of the older experiments using intermediate mass nuclei.  
  Address [Athar, M. Sajjad] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India, Email: sajathar@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290607500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 627  
Permanent link to this record
 

 
Author (down) Romero-Lopez, F.; Sharpe, S.R.; Blanton, T.D.; Briceno, R.A.; Hansen, M.T. url  doi
openurl 
  Title Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 007 - 43pp  
  Keywords Lattice QCD; Scattering Amplitudes  
  Abstract In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studies of the quantization condition to explore the finite-volume signature for a variety of two- and three-particle interactions. We determine the spectrum for parameters such that the system contains both dimers (two-particle bound states) and one or more trimers (in which all three particles are bound), and also for cases where the two-particle subchannel is resonant. We also show how the quantization condition provides a tool for determining infinite-volume dimer-particle scattering amplitudes for energies below the dimer breakup. We illustrate this for a series of examples, including one that parallels physical deuteron-nucleon scattering. All calculations presented here are restricted to the case of three identical scalar particles.  
  Address [Romero-Lopez, Fernando] Univ Valencia, CSIC, IFIC, Paterna 46980, Spain, Email: fernando.romero@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000497979000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4207  
Permanent link to this record
 

 
Author (down) Rinaldi, M.; Scopetta, S.; Traini, M.; Vento, V. url  doi
openurl 
  Title Correlations in double parton distributions: perturbative and non-perturbative effects Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 063 - 36pp  
  Keywords Deep Inelastic Scattering (Phenomenology); Phenomenological Models  
  Abstract The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincare covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.  
  Address [Rinaldi, Matteo; Scopetta, Sergio] Univ Perugia, Dipartimento Fis & Geol, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386670400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2847  
Permanent link to this record
 

 
Author (down) Rinaldi, M. url  doi
openurl 
  Title GPDs at non-zero skewness in ADS/QCD model Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 771 Issue Pages 563-567  
  Keywords Phenomenological models; Deep inelastic scattering (phenomenology)  
  Abstract We study Generalized Parton Distribution functions (GPDs) usually measured in hard exclusive processes and encoding information on the three dimensional partonic structure of hadrons and their spin decomposition, for non-zeroskewness within the AdS/QCD formalism. To this aim the canonical scheme to calculate GPDs at zero skewness has been properly generalized. Furthermore, we show that the latter quantities, in this non-forwardregime, are sensitive to non-trivialdetails of the hadronic light front wave function, such as a kind of parton correlations usually not accessible in studies of form factors and GPDs at zero skewness.  
  Address [Rinaldi, Matteo] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: mrinaldi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406183300084 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3262  
Permanent link to this record
 

 
Author (down) Ramirez-Uribe, S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Vale Silva, L. url  doi
openurl 
  Title Quantum algorithm for Feynman loop integrals Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 100 - 32pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract We present a novel benchmark application of a quantum algorithm to Feynman loop integrals. The two on-shell states of a Feynman propagator are identified with the two states of a qubit and a quantum algorithm is used to unfold the causal singular configurations of multiloop Feynman diagrams. To identify such configurations, we exploit Grover's algorithm for querying multiple solutions over unstructured datasets, which presents a quadratic speed-up over classical algorithms when the number of solutions is much smaller than the number of possible configurations. A suitable modification is introduced to deal with topologies in which the number of causal states to be identified is nearly half of the total number of states. The output of the quantum algorithm in IBM Quantum and QUTE Testbed simulators is used to bootstrap the causal representation in the loop-tree duality of representative multiloop topologies. The algorithm may also find application and interest in graph theory to solve problems involving directed acyclic graphs.  
  Address [Ramirez-Uribe, Selomit; Renteria-Olivo, Andres E.; Rodrigo, German; Sborlini, German F. R.; Vale Silva, Luiz] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000796990400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5230  
Permanent link to this record
 

 
Author (down) Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title Universal opening of four-loop scattering amplitudes to trees Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 129 - 22pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract The perturbative approach to quantum field theories has made it possible to obtain incredibly accurate theoretical predictions in high-energy physics. Although various techniques have been developed to boost the efficiency of these calculations, some ingredients remain specially challenging. This is the case of multiloop scattering amplitudes that constitute a hard bottleneck to solve. In this paper, we delve into the application of a disruptive technique based on the loop-tree duality theorem, which is aimed at an efficient computation of such objects by opening the loops to nondisjoint trees. We study the multiloop topologies that first appear at four loops and assemble them in a clever and general expression, the (NMLT)-M-4 universal topology. This general expression enables to open any scattering amplitude of up to four loops, and also describes a subset of higher order configurations to all orders. These results confirm the conjecture of a factorized opening in terms of simpler known subtopologies, which also determines how the causal structure of the entire loop amplitude is characterized by the causal structure of its subtopologies. In addition, we confirm that the loop-tree duality representation of the (NMLT)-M-4 universal topology is manifestly free of noncausal thresholds, thus pointing towards a remarkably more stable numerical implementation of multiloop scattering amplitudes.  
  Address [Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Bobadilla, William J. Torres] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000641467800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4787  
Permanent link to this record
 

 
Author (down) Papoulias, D.K.; Kosmas, T.S.; Sahu, R.; Kota, V.K.B.; Hota, M. url  doi
openurl 
  Title Constraining nuclear physics parameters with current and future COHERENT data Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 800 Issue Pages 135133 - 9pp  
  Keywords Coherent neutrino elastic neutrino-nucleus; scattering; COHERENT experiment; Deformed shell model; Weak neutron form factors  
  Abstract Motivated by the recent observation of coherent elastic neutrino-nucleus scattering (CE nu NS) at the COHERENT experiment, our goal is to explore its potential in probing important nuclear structure parameters. We show that the recent COHERENT data offers unique opportunities to investigate the neutron nuclear form factor. Our present calculations are based on the deformed Shell Model (DSM) method which leads to a better fit of the recent CE nu NS data, as compared to known phenomenological form factors such as the Helm-type, symmetrized Fermi and Klein-Nystrand. The attainable sensitivities and the prospects of improvement during the next phase of the COHERENT experiment are also considered and analyzed in the framework of two upgrade scenarios.  
  Address [Papoulias, D. K.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: dipapou@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000503832500014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4244  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva