toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gomez-Cadenas, J.J.; Martin-Albo, J.; Menendez, J.; Mezzetto, M.; Monrabal, F.; Sorel, M. doi  openurl
  Title The search for neutrinoless double-beta decay Type Journal Article
  Year 2024 Publication Rivista del Nuovo Cimento Abbreviated Journal Riv. Nuovo Cimento  
  Volume 46 Issue Pages 619-692  
  Keywords Neutrinos; Majorana; Double-beta decay; Nuclear matrix elements  
  Abstract Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle-physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.  
  Address [Gomez-Cadenas, Juan Jose; Monrabal, Francesc] Donostia Int Phys Ctr, ERC Basque Excellence Res Ctr, Donostia San Sebastian 20018, Spain, Email: jjgomezcadenas@dipc.org  
  Corporate Author Thesis  
  Publisher Springernature Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0393-697x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151173800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5915  
Permanent link to this record
 

 
Author (up) Hernandez, P.; Lopez-Pavon, J.; Rius, N.; Sandner, S. url  doi
openurl 
  Title Bounds on right-handed neutrino parameters from observable leptogenesis Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 012 - 58pp  
  Keywords Baryo-and Leptogenesis; Early Universe Particle Physics; Sterile or Heavy Neutrinos  
  Abstract We revisit the generation of a matter-antimatter asymmetry in the minimal extension of the Standard Model with two singlet heavy neutral leptons (HNL) that can explain neutrino masses. We derive an accurate analytical approximation to the solution of the complete linearized set of kinetic equations, which exposes the non-trivial parameter dependencies in the form of parameterization-independent CP invariants. The identification of various washout regimes relevant in different regions of parameter space sheds light on the relevance of the mass corrections in the interaction rates and clarifies the correlations of baryogenesis with other observables. In particular, by requiring that the measured baryon asymmetry is reproduced, we derive robust upper or lower bounds on the HNL mixings depending on their masses, and constraints on their flavour structure, as well as on the CP-violating phases of the PMNS mixing matrix, and the amplitude of neutrinoless double-beta decay. We also find certain correlations between low and high scale CP phases. Especially emphasizing the testable part of the parameter space we demonstrate that our findings are in very good agreement with numerical results. The methods developed in this work can help in exploring more complex scenarios.  
  Address [Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: m.pilar.hernandez@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000914640400003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5467  
Permanent link to this record
 

 
Author (up) Jeong, Y.S.; Palomares-Ruiz, S.; Reno, M.H.; Sarcevic, I. url  doi
openurl 
  Title Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 019 - 43pp  
  Keywords cosmological neutrinos; neutrino theory; supernova neutrinos  
  Abstract Sterile neutrinos with mass in the eV-scale and large mixings of order theta(0) similar or equal to 0.1 could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson phi. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, M-phi, and its coupling to sterile neutrinos, g(s). Then, we explore how to probe part of the allowed parameter space of this particular model with future observations of the diffuse supernova neutrino background by the Hyper-Kamiokande and DUNE detectors. For M-phi similar to 5 – 10 keV and g(s) similar to 10-(4) – 10(-2), as allowed by cosmological constraints, we find that interactions of diffuse supernova neutrinos with relic sterile neutrinos on their way to the Earth would result in significant dips in the neutrino spectrum which would produce unique features in the event spectra observed in these detectors.  
  Address [Jeong, Yu Seon; Sarcevic, Ina] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85704 USA, Email: ysjeong@email.arizona.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000434991300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3613  
Permanent link to this record
 

 
Author (up) Jimenez, R.; Kitching, T.; Pena-Garay, C.; Verde, L. url  doi
openurl 
  Title Can we measure the neutrino mass hierarchy in the sky? Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 035 - 14pp  
  Keywords cosmological neutrinos; neutrino masses from cosmology; power spectrum; gravitational lensing  
  Abstract Cosmological probes are steadily reducing the total neutrino mass window, resulting in constraints on the neutrino-mass degeneracy as the most significant outcome. In this work we explore the discovery potential of cosmological probes to constrain the neutrino hierarchy, and point out some subtleties that could yield spurious claims of detection. This has an important implication for next generation of double beta decay experiments, that will be able to achieve a positive signal in the case of degenerate or inverted hierarchy of Majorana neutrinos. We find that cosmological experiments that nearly cover the whole sky could in principle distinguish the neutrino hierarchy by yielding 'substantial' evidence for one scenario over the another, via precise measurements of the shape of the matter power spectrum from large scale structure and weak gravitational lensing.  
  Address [Jimenez, Raul; Verde, Licia] Univ Barcelona, ICREA, E-08028 Barcelona, Spain, Email: raul.jimenez@icc.ub.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279490800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 418  
Permanent link to this record
 

 
Author (up) Keivani, A.; Murase, K.; Petropoulou, M.; Fox, D.B.; Cenko, S.B.; Chaty, S.; Coleiro, A.; DeLaunay, J.J.; Dimitrakoudis, S.; Evans, P.A.; Kennea, J.A.; Marshall, F.E.; Mastichiadis, A.; Osborne, J.P.; Santander, M.; Tohuvavohu, A.; Turley, C.F. url  doi
openurl 
  Title A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration Type Journal Article
  Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 864 Issue 1 Pages 84 - 16pp  
  Keywords Lacertae objects: general; BL Lacertae objects: individual (TXS 0506+056); galaxies: active; gamma rays: galaxies; neutrinos; radiation mechanisms: non-thermal  
  Abstract Detection of the IceCube-170922A neutrino coincident with the flaring blazar TXS 0506+056, the first and only similar to 3 sigma high-energy neutrino source association to date, offers a potential breakthrough in our understanding of high-energy cosmic particles and blazar physics. We present a comprehensive analysis of TXS. 0506+056 during its flaring state, using newly collected Swift, NuSTAR, and X-shooter data with Fermi observations and numerical models to constrain the blazar's particle acceleration processes and multimessenger (electromagnetic (EM) and high-energy neutrino) emissions. Accounting properly for EM cascades in the emission region, we find a physically consistent picture only within a hybrid leptonic scenario, with gamma-rays produced by external inverse-Compton processes and high-energy neutrinos via a radiatively subdominant hadronic component. We derive robust constraints on the blazar's neutrino and cosmic-ray emissions and demonstrate that, because of cascade effects, the 0.1-100 keV emissions of TXS. 0506+056 serve as a better probe of its hadronic acceleration and highenergy neutrino production processes than its GeV-TeV emissions. If the IceCube neutrino association holds, physical conditions in the TXS. 0506+056 jet must be close to optimal for high-energy neutrino production, and are not favorable for ultrahigh-energy cosmic-ray acceleration. Alternatively, the challenges we identify in generating a significant rate of IceCube neutrino detections from TXS. 0506+056 may disfavor single-zone models, in which.-rays and high-energy neutrinos are produced in a single emission region. In concert with continued operations of the high-energy neutrino observatories, we advocate regular X-ray monitoring of TXS. 0506+056 and other blazars in order to test single-zone blazar emission models, clarify the nature and extent of their hadronic acceleration processes, and carry out the most sensitive possible search for additional multimessenger sources.  
  Address [Keivani, A.; Murase, K.; DeLaunay, J. J.; Turley, C. F.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: keivani@psu.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443293800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3708  
Permanent link to this record
 

 
Author (up) KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 256 Issue Pages 107477 - 15pp  
  Keywords Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE  
  Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564482200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4520  
Permanent link to this record
 

 
Author (up) Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Sensitivities to neutrino electromagnetic properties at the TEXONO experiment Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 750 Issue Pages 459-465  
  Keywords Reactor neutrinos; Coherent elastic neutrino-nucleus scattering (CENNS); Weak mixing angle; Neutrino magnetic moment; Neutrino charge radius; Quenching factor  
  Abstract The possibility of measuring neutral-current coherent elastic neutrino nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.  
  Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Div Theoret Phys, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000364250600075 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2472  
Permanent link to this record
 

 
Author (up) Lattanzi, M.; Lineros, R.A.; Taoso, M. url  doi
openurl 
  Title Connecting neutrino physics with dark matter Type Journal Article
  Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 16 Issue Pages 125012 - 19pp  
  Keywords neutrinos; dark matter; flavour; majoron; sterile neutrinos  
  Abstract The origin of neutrino masses and the nature of dark matter are two in most pressing open questions in modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the seesaw mechanism, as in the majoron and sterile neutrino scenarios. We present the theoretical motivation for both models and discuss their phenomenology, confronting the predictions of these scenarios with cosmological and astrophysical observations. Finally, we discuss the possibility that the stability of dark matter originates from a flavor symmetry of the leptonic sector. We review a proposal based on an A(4) flavor symmetry.  
  Address [Lattanzi, Massimiliano] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346823200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2062  
Permanent link to this record
 

 
Author (up) Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Sarikas, S. url  doi
openurl 
  Title Updated BBN bounds on the cosmological lepton asymmetry for non-zero theta(13) Type Journal Article
  Year 2012 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 708 Issue 1-2 Pages 1-5  
  Keywords Neutrinos; Physics of the early Universe; Primordial asymmetries  
  Abstract We discuss the bounds on the cosmological lepton number from Big Bang Nucleosynthesis (BBN), in light of recent evidences for a large value of the neutrino mixing angle theta(13), sin(2) theta(13) greater than or similar to 0.01 at 2 sigma. The largest asymmetries for electron and mu, tau neutrinos compatible with He-4 and H-2 primordial yields are computed versus the neutrino mass hierarchy and mixing angles. The flavour oscillation dynamics is traced till the beginning of BBN and neutrino distributions after decoupling are numerically computed. The latter contains in general, non-thermal distortion due to the onset of flavour oscillations driven by solar squared mass difference in the temperature range where neutrino scatterings become inefficient to enforce thermodynamical equilibrium. Depending on the value of theta(13), this translates into a larger value for the effective number of neutrinos, N-eff. Upper bounds on this parameter are discussed for both neutrino mass hierarchies. Values for N-eff which are large enough to be detectable by the Planck experiment are found only for the (presently disfavoured) range sin(2) theta(13) <= 0.01.  
  Address [Pastor, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular, Ed Inst Invest, E-46071 Valencia, Spain, Email: pastor@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301310000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 967  
Permanent link to this record
 

 
Author (up) Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Sarikas, S. url  doi
openurl 
  Title Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 035 - 18pp  
  Keywords big bang nucleosynthesis; neutrino properties; cosmological neutrinos; physics of the early universe  
  Abstract The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N-eff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N-eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta(nu) = eta(nu e) + eta(nu mu) + eta(nu tau) and the initial electron neutrino asymmetry eta(in)(nu e), solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu(e)-(nu) over bar (e) asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial H-2/H density ratio and He-4 mass fraction. Note that taking the baryon fraction as measured by WMAP, the H-2/H abundance plays a relevant role in constraining the allowed regions in the eta(nu)-eta(in)(nu e) plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N-eff as a function of the mixing parameter theta(13), and point out the upper bound N-eff less than or similar to 3.4. Comparing these results with the forthcoming measurement of N-eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.  
  Address [Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy, Email: mangano@na.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291258300035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 642  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva