|   | 
Details
   web
Records
Author (up) Hernandez-Prieto, A.; Quintana, B.; Martin, S.; Domingo-Pardo, C.
Title Study of accuracy in the position determination with SALSA, a gamma-scanning system for the characterization of segmented HPGe detectors Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 823 Issue Pages 98-106
Keywords gamma-Camera; Virtual collimation; SAlamanca Lyso-based Scanning Array (SALSA); Segmented HPGe detectors
Abstract Accurate characterization of the electric response of segmented high-purity germanium (HPGe) detectors as a function of the interaction position is one of the current goals of the Nuclear Physics community seeking to perform gamma-ray tracking or even imaging with these detectors. For this purpose, scanning devices must be developed to achieve the signal-position association with the highest precision. With a view to studying the accuracy achieved with SALSA, the SAlamanca Lyso-based Scanning Array, here we report a detailed study on the uncertainty sources and their effect in the position determination inside the HPGe detector to be scanned. The optimization performed on the design of SALSA, aimed at minimizing the effect of the uncertainty sources, afforded an intrinsic uncertainty of 2 mm for large coaxial detectors and 1 mm for planar ones.
Address [Hernandez-Prieto, A.; Quintana, B.; Martin, S.] Univ Salamanca, Dept Fis Fundamental, Lab Radiac Ionizantes, C Espejo S-N, E-37008 Salamanca, Spain, Email: alvaro.prieto@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000374661600014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2664
Permanent link to this record
 

 
Author (up) Hinke, C.B. et al; Domingo-Pardo, C.
Title Superallowed Gamow-Teller decay of the doubly magic nucleus Sn-100 Type Journal Article
Year 2012 Publication Nature Abbreviated Journal Nature
Volume 486 Issue 7403 Pages 341-345
Keywords
Abstract The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During beta(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of Sn-100, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the beta-decay of Sn-100, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear beta-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, In-100, are well reproduced by modern, large-scale shell model calculations.
Address [Hinke, C. B.; Boehmer, M.; Faestermann, T.; Gernhaeuser, R.; Kruecken, R.; Maier, L.; Steiger, K.; Straub, K.; Nebel, F.; Schwertel, S.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany, Email: thomas.faestermann@ph.tum.de
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000305466800032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1055
Permanent link to this record
 

 
Author (up) Huyuk, T. et al; Gadea, A.; Aliaga-Varea, R.J.; Domingo-Pardo, C.
Title Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA Type Journal Article
Year 2016 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 52 Issue 3 Pages 55 - 8pp
Keywords
Abstract The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large gamma-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23 l and it is filled with the EJ301 liquid scintillator, that presents good neutron-gamma discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the Ni-58 + Fe-56 reaction measured with the Neutron Wall detector array.
Address [Hueyuek, Tayfun; Gadea, Andres; Jose Aliaga-Varea, Ramon; Domingo-Pardo, Cesar] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Valencia, Spain, Email: huyuk@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000372866900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2607
Permanent link to this record
 

 
Author (up) Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C.
Title Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 42 Issue Pages 1-6
Keywords Neutron background; Underground physics; He-3 proportional counters
Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).
Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000315371900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1351
Permanent link to this record
 

 
Author (up) Kiss, G.G. et al; Tarifeño-Saldivia, A.; Tain, J.L.; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Nacher, E.; Rubio, B.; Tolosa, A.
Title Measuring the beta-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region Type Journal Article
Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 936 Issue 2 Pages 107 - 18pp
Keywords
Abstract The beta-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The existing beta-decay half-life (T (1/2)) database was significantly increased toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data not only constrain the theoretical predictions of half-lives and beta-delayed neutron-emission probabilities, but also allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located at A approximate to 160 in the r-process abundance distribution through astrophysical reaction network calculations. An uncertainty quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has identified the half-lives of Sm-168 and of several gadolinium isotopes as some of the key variables among the current experimental data to understand the remaining abundance uncertainty at A = 167-172.
Address [Kiss, G. G.; Vitez-Sveiczer, A.; Algora, A.; Szegedi, T. N.] Inst Nucl Res ATOMKI, Bem Ter 18-c, H-4026 Debrecen, Hungary, Email: ggkiss@atomki.hu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000850804600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5353
Permanent link to this record