toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Athron, P.; Park, J.H.; Stockinger, D.; Voigt, A. url  doi
openurl 
  Title FlexibleSUSY-A spectrum generator generator for supersymmetric models Type Journal Article
  Year 2015 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 190 Issue Pages 139-172  
  Keywords Sparticle; Supersymmetry; Higgs; Renormalization group equations  
  Abstract We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos. Program Summary Program title: FlexibleSUSY Catalogue identifier: AEVIv10 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEVIv10.html obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 129406 No. of bytes in distributed program, including test data, etc.: 854831 Distribution format: tar.gz Programming language: C++, Wolfram/Mathematica, FORTRAN, Bourne shell. Computer: Personal computer. Operating system: Tested on Linux 3.x, Mac OS X. Classification: 11.1, 11.6, 6.5. External routines: SARAH 4.0.4, Boost library, Eigen, LAPACK Nature of problem: Determining the mass spectrum and mixings for any supersymmetric model. The generated code must find simultaneous solutions to constraints which are specified at two or more different renormalization scales, which are connected by renormalization group equations forming a large set of coupled first-order differential equations. Solution method: Nested iterative algorithm and numerical minimization of the Higgs potential. Restrictions: The couplings must remain perturbative at all scales between the highest and the lowest boundary condition. FlexibleSUSY assumes that all couplings of the model are real (i.e. CP-conserving). Due to the modular nature of the generated code, adaption and extension to overcome restrictions in scope is quite straightforward. Running time: 0.06-0.2 seconds per parameter point.  
  Address [Athron, Peter] Univ Adelaide, ARC Ctr Excellence Particle Phys Tera Scale, Sch Chem & Phys, Adelaide, SA 5005, Australia, Email: Alexander.Voigt@desy.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000351645900012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2164  
Permanent link to this record
 

 
Author Ayala, C.; Cvetic, G. url  doi
openurl 
  Title anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models Type Journal Article
  Year 2016 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 199 Issue Pages 114-117  
  Keywords Analytic (holomorphic) QCD coupling; Fractional Analytic Perturbation Theory; Two-delta analytic QCD model; Massive Perturbation Theory; Perturbative QCD; Renormalization group evolution  
  Abstract We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings A(v)(Q(2)) for complex or real squared momenta Q(2). These couplings are holomorphic analogs of the powers a(Q(2))(v) of the underlying perturbative QCD (pQCD) coupling a(Q(2)) equivalent to alpha(s)(Q(2))/pi, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 delta anQCD), and Massive Perturbation Theory (MPT). The index v can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetic, 2015), but are now written in Fortran. Program summary Program title: AanQCDext Catalogue identifier: AEYKv10 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYICv1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12105 No. of bytes in distributed program, including test data, etc.: 98822 Distribution format: tar.gz Programming language: Fortran. Computer: Any work-station or PC where Fortran 95/200312008 (gfortran) is running. Operating system: Operating system Linux (Ubuntu and Scientific Linux), Windows (in all cases using gfortran). Classification: 11.1, 11.5. Nature of problem: Calculation of values of the running analytic couplings A(v)(Q(2); N-f) for general complex squared momenta Q(2) equivalent to -q(2), in three analytic QCD models, where A(v)(Q(2); N-f) is the analytic (holomorphic) analog of the power (alpha(s)(Q(2); N-f)/pi)(v). Here, A(v)(Q(2); N-f) is a holomorphic function in the Q(2) complex plane, with the exception of the negative semiaxis (-infinity, -M-thr(2)], reflecting the analyticity properties of the spacelike renormalization invariant quantities D(Q(2)) in QCD. In contrast, the perturbative QCD power (alpha(s)(Q(2); N-f)/pi)(v) has singularities even outside the negative semiaxis (Landau ghosts). The three considered models are: Analytic Perturbation theory (APT); Two-delta analytic QCD (2 delta anQCD); Massive Perturbation Theory (MPT). We refer to Ref. [1] for more details and literature. Solution method: The Fortran programs for FAPT and 2 delta anQCD models contain routines and functions needed to perform two-dimensional numerical integrations involving the spectral function, in order to evaluate A(v)(Q(2)) couplings. In MPT model, one-dimensional numerical integration involving A(1)(Q(2)) is sufficient to evaluate any A(v)(Q(2)) coupling. Restrictions: For unphysical choices of the input parameters the results are meaningless. When Q(2) is close to the cut region of the couplings (Q(2) real negative), the calculations can take more time and can have less precision. Running time: For evaluation of a set of about 10 related couplings, the times vary in the range t similar to 10(1)-10(2) s. MPT requires less time, t similar to 1-10(1) s. References: [1] C. Ayala and G. Cvetic, anQCD: a Mathematica package for calculations in general analytic QCD models, Comput. Phys. Commun. 190 (2015) 182.  
  Address [Ayala, Cesar] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: c.ayala86@gmail.com;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367113200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2501  
Permanent link to this record
 

 
Author Bonilla, J.; Brivio, I.; Gavela, M.B.; Sanz, V. url  doi
openurl 
  Title One-loop corrections to ALP couplings Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 168 - 57pp  
  Keywords Beyond Standard Model; Effective Field Theories; Renormalization Group  
  Abstract The plethora of increasingly precise experiments which hunt for axion-like particles (ALPs), as well as their widely different energy reach, call for the theoretical understanding of ALP couplings at loop-level. We derive the one-loop contributions to ALP-SM effective couplings, including finite corrections. The complete leading-order – dimension five – effective linear Lagrangian is considered. The ALP is left off-shell, which is of particular impact on LHC and accelerator searches of ALP couplings to gamma gamma, ZZ, WW, Z gamma gluons and fermions. All results are obtained in the covariant Rg gauge. A few phenomenological consequences are also explored as illustration, with flavour diagonal channels in the case of fermions: in particular, we explore constraints on the coupling of the ALP to top quarks, that can be extracted from LHC data, from astrophysical sources and from Dark Matter direct detection experiments such as PandaX, LUX and XENONIT. Furthermore, we clarify the relation between alternative ALP bases, the role of gauge anomalous couplings and their interface with chirality-conserving and chirality-flip fermion interactions, and we briefly discuss renormalization group aspects.  
  Address [Bonilla, J.; Gavela, M. B.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: jesus.bonilla@ua.m.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000721914800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5029  
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Jones Perez, J. url  doi
openurl 
  Title SUSY renormalization group effects in ultra high energy neutrinos Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 133 - 26pp  
  Keywords Neutrino Physics; Supersymmetric Standard Model; Renormalization Group  
  Abstract We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: (Phi(0)(v epsilon+(v) over bar epsilon) : Phi(0)(v mu+(v) over bar mu) : Phi(0)(v tau+(v) over bar tau)) = (1 : 2 : 0), (0 : 1 : 0), (1 : 0 : 0), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q(2) >= 10(7) GeV(2). However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale. Cerenkov detector such as IceCube.  
  Address [Bustamante, M; Gago, AM] Pontificia Univ Catolica Peru, Dept Ciencias, Sec Fis, Lima, Peru, Email: mbustamante@pucp.edu.pe  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000291364500065 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 684  
Permanent link to this record
 

 
Author Del Debbio, L.; Ramos, A. url  doi
openurl 
  Title Lattice determinations of the strong coupling Type Journal Article
  Year 2021 Publication Physics Reports Abbreviated Journal Phys. Rep.-Rev. Sec. Phys. Lett.  
  Volume 920 Issue Pages 1-71  
  Keywords QCD; Renormalization; Strong coupling; Lattice field theory  
  Abstract Lattice QCD has reached a mature status. State of the art lattice computations include u, d, s (and even the c) sea quark effects, together with an estimate of electromagnetic and isospin breaking corrections for hadronic observables. This precise and first principles description of the standard model at low energies allows the determination of multiple quantities that are essential inputs for phenomenology and not accessible to perturbation theory. One of the fundamental parameters that are determined from simulations of lattice QCD is the strong coupling constant, which plays a central role in the quest for precision at the LHC. Lattice calculations currently provide its best determinations, and will play a central role in future phenomenological studies. For this reason we believe that it is timely to provide a pedagogical introduction to the lattice determinations of the strong coupling. Rather than analysing individual studies, the emphasis will be on the methodologies and the systematic errors that arise in these determinations. We hope that these notes will help lattice practitioners, and QCD phenomenologists at large, by providing a self-contained introduction to the methodology and the possible sources of systematic error. The limiting factors in the determination of the strong coupling turn out to be different from the ones that limit other lattice precision observables. We hope to collect enough information here to allow the reader to appreciate the challenges that arise in order to improve further our knowledge of a quantity that is crucial for LHC phenomenology. Crown Copyright & nbsp;(c) 2021 Published by Elsevier B.V. All rights reserved.  
  Address [Del Debbio, Luigi] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland, Email: luigi.del.debbio@ed.ac.uk;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000659901700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4843  
Permanent link to this record
 

 
Author del Rio, A.; Durrer, R.; Patil, S.P. url  doi
openurl 
  Title Tensor bounds on the hidden universe Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 094 - 34pp  
  Keywords Cosmology of Theories beyond the SM; Renormalization Regularization and Renormalons  
  Abstract During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large N resummation. We detour to address certain subtleties regarding loop corrections during inflation, extending the analysis of [1]. Our main result is that one can extract bounds on the hidden field content of the universe from bounds on violations of the consistency relation between the tensor spectral index and the tensor to scalar ratio, were primordial tensors ever detected. Such bounds are more competitive than the naive bound inferred from requiring inflation to occur below the strong coupling scale of gravity if deviations from the consistency relation can be bounded to within the sub-percent level. We discuss how one can meaningfully constrain the parameter space of various phenomenological scenarios and constructions that address naturalness with a large number of species (such as N-naturalness') with CMB observations up to cosmic variance limits, and possibly future 21cm and gravitational wave observations.  
  Address [del Rio, Adrian] Univ Valencia, Fac Fis, CSIC, Dept Fis Teor IFIC,Ctr Mixto, E-46100 Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453779400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3852  
Permanent link to this record
 

 
Author Dhani, P.K.; Rodrigo, G.; Sborlini, G.F.R. url  doi
openurl 
  Title Triple-collinear splittings with massive particles Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 188 - 20pp  
  Keywords Factorization; Renormalization Group; Higher-Order Perturbative Calculations; Quark Masses; Resummation  
  Abstract We analyze in detail the most singular behaviour of processes involving triple-collinear splittings with massive particles in the quasi-collinear limit, and present compact expressions for the splitting amplitudes and the corresponding splitting kernels at the squared-amplitude level. Our expressions fully agree with well-known triple-collinear splittings in the massless limit, which are used as a guide to achieve the final expressions. These results are important to quantify dominant mass effects in many observables, and constitute an essential ingredient of current high-precision computational frameworks for collider phenomenology.  
  Address [Dhani, Prasanna K.; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Paterna, Valencia, Spain, Email: dhani@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001132421500004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5882  
Permanent link to this record
 

 
Author Du, M.L.; Baru, V.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Oller, J.A.; Wang, Q. url  doi
openurl 
  Title Revisiting the nature of the P-c pentaquarks Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 157 - 50pp  
  Keywords QCD Phenomenology; Non-perturbative renormalization  
  Abstract The nature of the three narrow hidden-charm pentaquark P-c states, i.e., P-c (4312), P-c (4440) and P-c (4457), is under intense discussion since their discovery from the updated analysis of the process Lambda(0)(b) -> I ) J/psi pK(-) by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Sigma(()(c)*()) (D) over bar (()*()) molecules, by including the Lambda(c)(D) over bar (()*()) and eta(c)p as explicit inelastic channels in addition to the J/psi p, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Sigma(()(c)*()) (D) over bar (()*()), and inelastic channels and without the Lambda(c)(D) over bar (()*()) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the Lambda(c)(D) over bar (()*()) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/psi p invariant mass distribution are consistent with the interpretation of the P-c(4312) and P-c(4440)/P-c(4457) as Sigma(c)(D) over bar and Sigma(c)(D) over bar* hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, P-c(4380), identified as a Sigma(c)*(D) over bar molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the P-c (4440) and P-c (4457) being J(P) = 3/2(-) and 1/2(-), respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the P-c (4440) and the P-c (4457) in the Sigma(()(c)*())<(D)over ( )anf eta(c)p mass distributions from Lambda(0)(b) ->( )Sigma(()(c)*()) (D) over barK(-) and Lambda(0)(b) -> eta(c)pK(-) will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the Lambda(c)(D) over bar (()*()) final states.  
  Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: du@hiskp.uni-bonn.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000693090600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4958  
Permanent link to this record
 

 
Author Escribano, P.; Reig, M.; Vicente, A. url  doi
openurl 
  Title Generalizing the Scotogenic model Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 097 - 25pp  
  Keywords Beyond Standard Model; Neutrino Physics; Renormalization Group  
  Abstract The Scotogenic model is an economical setup that induces Majorana neutrino masses at the 1-loop level and includes a dark matter candidate. We discuss a generalization of the original Scotogenic model with arbitrary numbers of generations of singlet fermion and inert doublet scalar fields. First, the full form of the light neutrino mass matrix is presented, with some comments on its derivation and with special attention to some particular cases. The behavior of the theory at high energies is explored by solving the Renormalization Group Equations.  
  Address [Escribano, Pablo; Reig, Mario; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pablo.escribano@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000553119900003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4477  
Permanent link to this record
 

 
Author Ferreiro, A.; Navarro-Salas, J. url  doi
openurl 
  Title Running couplings from adiabatic regularization Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 792 Issue Pages 81-85  
  Keywords Adiabatic renormalization; Running couplings; Semiclassical Maxwell-Einstein equations  
  Abstract We extend the adiabatic regularization method by introducing an arbitrary mass scale μin the construction of the subtraction terms. This allows us to obtain, in a very robust way, the running of the coupling constants by demanding mu-invariance of the effective semiclassical (Maxwell-Einstein) equations. In particular, we get the running of the electric charge of perturbative quantum electrodynamics. Furthermore, the method brings about a renormalization of the cosmological constant and the Newtonian gravitational constant. The running obtained for these dimensionful coupling constants has new relevant (non-logarithmic) contributions, not predicted by dimensional regularization.  
  Address [Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Ctr Mixto, Dept Fis Teor,CSIC, E-46100 Valencia, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466802100015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3997  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva