toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Davesne, D.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Fitting (NLO)-L-3 pseudo-potentials through central plus tensor Landau parameters Type Journal Article
  Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 41 Issue 6 Pages 065104 - 12pp  
  Keywords Landau parameters; (NLO)-L-3; phenomenological interactions; fitting methods  
  Abstract Landau parameters determined from phenomenological finite-range interactions are used to get an estimation of next-to-next-to-next-to-leading order ((NLO)-L-3) pseudo-potentials parameters. The parameter sets obtained in this way are shown to lead to consistent results concerning saturation properties. The uniqueness of this procedure is discussed, and an estimate of the error induced by the truncation at (NLO)-L-3 is given.  
  Address [Davesne, D.] Univ Lyon, F-69622 Lyon, France, Email: davesne@inpl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338425100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1838  
Permanent link to this record
 

 
Author Moretti, F.; Bombacigno, F.; Montani, G. url  doi
openurl 
  Title The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas Type Journal Article
  Year 2021 Publication Universe Abbreviated Journal Universe  
  Volume 7 Issue 12 Pages 496 - 28pp  
  Keywords gravitational waves; gauge-invariant method; Landau damping; macroscopic gravity  
  Abstract We discuss some general and relevant features of longitudinal gravitational modes in Horndeski gravity and their interaction with matter media. Adopting a gauge-invariant formulation, we clarify how massive scalar and vector fields can induce additional transverse and longitudinal excitations, resulting in breathing, vector, and longitudinal polarizations. We review, then, the interaction of standard gravitational waves with a molecular medium, outlining the emergence of effective massive gravitons, induced by the net quadrupole moment due to molecule deformation. Finally, we investigate the interaction of the massive mode in Horndeski gravity with a noncollisional medium, showing that Landau damping phenomenon can occur in the gravitational sector as well. That allows us to introduce the concept of “gravitational plasma”, where inertial forces associated with the background field play the role of cold ions in electromagnetic plasma.  
  Address [Moretti, Fabio; Montani, Giovanni] Sapienza Univ Rome, Dept Phys, Ple Aldo Moro 5, I-00185 Rome, Italy, Email: fabio.moretti@uniroma1.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000741918900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5076  
Permanent link to this record
 

 
Author Pastore, A.; Davesne, D.; Navarro, J. url  doi
openurl 
  Title Nuclear matter response function with a central plus tensor Landau interaction Type Journal Article
  Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 41 Issue 5 Pages 055103 - 17pp  
  Keywords Landau; random phase approximation; phenomenological interactions; tensor  
  Abstract We present a method to obtain response functions in the random phase approximation (RPA) based on a residual interaction described in terms of Landau parameters with central plus tensor contributions. The response functions keep the explicit momentum dependence of the RPA, in contrast with the traditional Landau approximation. Results for symmetric nuclear matter and pure neutron matter are presented using Landau parameters derived from finite-range interactions, both phenomenological and microscopic. We study the convergence of response functions as the number of Landau parameters is increased.  
  Address [Pastore, A.; Navarro, J.] Univ Libre Brussels, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: apastore@ulb.ac.be  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334662500015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1750  
Permanent link to this record
 

 
Author Pastore, A.; Davesne, D.; Navarro, J. url  doi
openurl 
  Title Linear response of homogeneous nuclear matter with energy density functionals Type Journal Article
  Year 2015 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 563 Issue Pages 1-67  
  Keywords Skyrme functional; Linear response theory; Landau parameters  
  Abstract Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.  
  Address [Pastore, A.] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: davesne@ipnl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350515400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2143  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva