toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Maji, R.; Park, W.I. url  doi
openurl 
  Title Supersymmetric U(1)B-L flat direction and NANOGrav 15 year data Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 015 - 19pp  
  Keywords Cosmic strings; domain walls; monopoles; cosmological phase transitions; cosmology of theories beyond the SM; gravitational waves / sources  
  Abstract We show that, when connected with monopoles, the flat D-flat direction breaking the local U(1)B-L symmetry as an extension of the minimal supersymmetric standard model can be responsible for the signal of a stochastic gravitational wave background recently reported by NANOGrav collaborations, while naturally satisfying constraints at high frequency band. Thanks to the flatness of the direction, a phase of thermal inflation arises naturally. The reheating temperature is quite low, and suppresses signals at frequencies higher than the characteristic frequency set by the reheating temperature. Notably, forthcoming spaced based experiments such as LISA can probe the cutoff frequency, providing an indirect clue of the scale of soft SUSY-breaking mass parameter.  
  Address [Maji, Rinku] Jeonbuk Natl Univ, Dept Phys, Lab Symmetry & Struct Universe, Jeonju 54896, South Korea, Email: rinkumaji9792@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001147733000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5967  
Permanent link to this record
 

 
Author (up) Maji, R.; Park, W.I.; Shafi, Q. url  doi
openurl 
  Title Gravitational waves from walls bounded by strings in SO(10) model of pseudo-Goldstone dark matter Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 845 Issue Pages 138127 - 5pp  
  Keywords  
  Abstract We explore the gravitational wave spectrum generated by string-wall structures in an SO (10) (Spin(10)) based scenario of pseudo-Goldstone boson dark matter (pGDM) particle. This dark matter candidate is a linear combination of the Standard Model (SM) singlets present in the 126 and 16 dimensional Higgs fields. The Higgs 126-plet vacuum expectation value (VEV) < 126(H)> leaves unbroken the Z(2) subgroup of Z(4), the center of SO (10). Among other things, this yields topologically stable cosmic strings with a string tension μsimilar to < 126(H)>(2). The subsequent (spontaneous) breaking of Z(2) at a significantly lower scale by the 16-plet VEV < 16(H)> leads to the appearance of domain walls bounded by the strings produced earlier. We display the gravitational wave spectrum for G μvalues varying between 10(-15) and 10(-9) (< 126(H)> similar to 10(11) – 10(14) GeV), and < 16(H)> similar to 0.1 – 10(2) TeV range (G denotes Newton's constant.) These predictions can be tested, as we show, by a variety of (proposed) experiments including LISA, ET, CE and others.  
  Address [Maji, Rinku] Jeonbuk Natl Univ, Dept Phys, Lab Symmetry & Struct, Jeonju 54896, South Korea, Email: rinkumaji9792@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001116786800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5842  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva