|   | 
Details
   web
Records
Author Carrasco, J.; Zurita, J.
Title Emerging jet probes of strongly interacting dark sectors Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 034 - 23pp
Keywords Dark Matter at Colliders; New Gauge Interactions; New Light Particles; Higgs Properties
Abstract A strongly interacting dark sector can give rise to a class of signatures dubbed dark showers, where in analogy to the strong sector in the Standard Model, the dark sector undergoes its own showering and hadronization, before decaying into Standard Model final states. When the typical decay lengths of the dark sector mesons are larger than a few centimeters (and no larger than a few meters) they give rise to the striking signature of emerging jets, characterized by a large multiplicity of displaced vertices.In this article we consider the general reinterpretation of the CMS search for emerging jets plus prompt jets into arbitrary new physics scenarios giving rise to emerging jets. More concretely, we consider the cases where the SM Higgs mediates between the dark sector and the SM, for several benchmark decay scenarios. Our procedure is validated employing the same model than the CMS emerging jet search. We find that emerging jets can be the leading probe in regions of parameter space, in particular when considering the so-called gluon portal and dark photon portal decay benchmarks. With the current 16.1 fb-1 of luminosity this search can exclude down to O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(20)% exotic branching ratio of the SM Higgs, but a naive extrapolation to the 139 fb-1 luminosity employed in the current model-independent, indirect bound of 16 % would probe exotic branching ratios into dark quarks down to below 10 %. Further extrapolating these results to the HL-LHC, we find that one can pin down exotic branching ratio values of 1%, which is below the HL-LHC expectations of 2.5-4 %. We make our recasting code publicly available, as part of the LLP Recasting Repository.
Address [Carrasco, Juliana; Zurita, Jose] Univ Valencia, Inst Fis Corpuscular, CSIC, Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: Juliana.Carrasco@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001137951900009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5893
Permanent link to this record
 

 
Author Delgado, R.L.; Gomez-Ambrosio, R.; Martinez-Martin, J.; Salas-Bernardez, A.; Sanz-Cillero, J.J.
Title Production of two, three, and four Higgs bosons: where SMEFT and HEFT depart Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 037 - 45pp
Keywords Anomalous Higgs Couplings; Higgs Properties; Strongly Interacting Higgs; Electroweak Precision Physics
Abstract In this article we study the phenomenological implications of multiple Higgs boson production from longitudinal vector boson scattering in the context of effective field theories. We find compact representations for effective tree-level amplitudes with up to four final state Higgs bosons. Total cross sections are then computed for scenarios relevant at the LHC in which we find the general Higgs Effective Theory (HEFT) prediction avoids the heavy suppression observed in Standard Model Effective Field Theory (SMEFT).
Address [Delgado, Rafael L.] Univ Politecn Madrid, Dept Matemat Aplicadas TIC, Nikola Tesla,s-n, Madrid 28031, Spain, Email: rafael.delgado@upm.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001177947600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6013
Permanent link to this record
 

 
Author Gomez Ambrosio, R.; ter Hoeve, J.; Madigan, M.; Rojo, J.; Sanz, V.
Title Unbinned multivariate observables for global SMEFT analyses from machine learning Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 033 - 66pp
Keywords SMEFT; Higgs Properties
Abstract Theoretical interpretations of particle physics data, such as the determination of the Wilson coefficients of the Standard Model Effective Field Theory (SMEFT), often involve the inference of multiple parameters from a global dataset. Optimizing such interpretations requires the identification of observables that exhibit the highest possible sensitivity to the underlying theory parameters. In this work we develop a flexible open source frame-work, ML4EFT, enabling the integration of unbinned multivariate observables into global SMEFT fits. As compared to traditional measurements, such observables enhance the sensitivity to the theory parameters by preventing the information loss incurred when binning in a subset of final-state kinematic variables. Our strategy combines machine learning regression and classification techniques to parameterize high-dimensional likelihood ratios, using the Monte Carlo replica method to estimate and propagate methodological uncertainties. As a proof of concept we construct unbinned multivariate observables for top-quark pair and Higgs+Z production at the LHC, demonstrate their impact on the SMEFT parameter space as compared to binned measurements, and study the improved constraints associated to multivariate inputs. Since the number of neural networks to be trained scales quadratically with the number of parameters and can be fully parallelized, the ML4EFT framework is well-suited to construct unbinned multivariate observables which depend on up to tens of EFT coefficients, as required in global fits.
Address [Ambrosio, Raquel Gomez] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Milan, Italy, Email: raquel.gomezambrosio@unito.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000946004000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5501
Permanent link to this record