KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Carretero, V., Calvo, D., Cecchini, V., et al. (2025). Search for quantum decoherence in neutrino oscillations with six detection units of KM3NeT/ORCA. J. Cosmol. Astropart. Phys., 03(3), 039–21pp.
Abstract: Neutrinos described as an open quantum system may interact with the environment which introduces stochastic perturbations to their quantum phase. This mechanism leads to a loss of coherence along the propagation of the neutrino – a phenomenon commonly referred to as decoherence – and ultimately, to a modification of the oscillation probabilities. Fluctuations in space-time, as envisaged by various theories of quantum gravity, are a potential candidate for a decoherence-inducing environment. Consequently, the search for decoherence provides a rare opportunity to investigate quantum gravitational effects which are usually beyond the reach of current experiments. In this work, quantum decoherence effects are searched for in neutrino data collected by the KM3NeT/ORCA detector from January 2020 to November 2021. The analysis focuses on atmospheric neutrinos within the energy range of a few GeV to 100 GeV. Adopting the open quantum system framework, decoherence is described in a phenomenological manner with the strength of the effect given by the parameters Gamma(21) and Gamma(31). Following previous studies, a dependence of the type Gamma(ij) alpha (E/E-0)(n) on the neutrino energy is assumed and the cases n = -2,-1 are explored. No significant deviation with respect to the standard oscillation hypothesis is observed. Therefore, 90% CL upper limits are estimated as Gamma(21) < 4.6 center dot 10(-21) GeV and Gamma(31) < 8.4 center dot 10(-21) GeV for n = -2 and Gamma(21) < 1.9 center dot 10(-22) GeV and Gamma 31 < 2.7 center dot 10(-22) GeV for n = -1, respectively.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Carretero, V., Cecchini, V., et al. (2025). Probing invisible neutrino decay with the first six detection units of KM3NeT/ORCA. J. High Energy Phys., 04(4), 105–24pp.
Abstract: In the era of precision measurements of neutrino oscillation parameters, it is necessary for experiments to disentangle discrepancies that may indicate physics beyond the Standard Model in the neutrino sector. KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study the oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on the initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photosensors. A high-purity neutrino sample was extracted during 2020 and 2021, corresponding to an exposure of 433 kton-years. This sample is analysed following a binned log-likelihood approach to search for invisible neutrino decay, in a three-flavour neutrino oscillation scenario, where the third neutrino mass state nu 3 decays into an invisible state, e.g. a sterile neutrino. The resulting best fit of the invisible neutrino decay parameter is alpha 3=0.92-0.57+1.08x10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\alpha}3={0.92}{-0.57}<^>{+1.08}\times {10}<^>{-4} $$\end{document} eV2, corresponding to a scenario with theta 23 in the second octant and normal neutrino mass ordering. The results are consistent with the Standard Model, within a 2.1 sigma interval.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Carretero, V., Cecchini, V., et al. (2024). Differential Sensitivity of the KM3NeT/ARCA detector to a diffuse neutrino flux and to point-like source emission: Exploring the case of the Starburst Galaxies. Astropart Phys., 162, 102990–9pp.
Abstract: KM3NeT/ARCA is a Cherenkov neutrino telescope under construction in the Mediterranean sea, optimised for the detection of astrophysical neutrinos with energies above similar to 1 TeV. In this work, using Monte Carlo simulations including all-flavour neutrinos, the integrated and differential sensitivities for KM3NeT/ARCA are presented considering the case of a diffuse neutrino flux as well as extended and point-like neutrino sources. This analysis is applied to Starburst Galaxies demonstrating that the detector has the capability of tracing TeV neutrinos from these sources. Remarkably, after eight years, a hard power-law spectrum from the nearby Small Magellanic Cloud can be constrained. The sensitivity and discovery potential for NGC 1068 is also evaluated showing that KM3NeT/ARCA will discriminate between different astrophysical components of the measured neutrino flux after 3 years of data taking.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Cecchini, V., Garcia Soto, A., et al. (2024). Atmospheric muons measured with the KM3NeT detectors in comparison with updated numeric predictions. Eur. Phys. J. C, 84(7), 696–19pp.
Abstract: The measurement of the flux of muons produced in cosmic ray air showers is essential for the study of primary cosmic rays. Such measurements are important in extensive air shower detectors to assess the energy spectrum and the chemical composition of the cosmic ray flux, complementary to the information provided by fluorescence detectors. Detailed simulations of the cosmic ray air showers are carried out, using codes such as CORSIKA, to estimate the muon flux at sea level. These simulations are based on the choice of hadronic interaction models, for which improvements have been implemented in the post-LHC era. In this work, a deficit in simulations that use state-of-the-art QCD models with respect to the measurement deep underwater with the KM3NeT neutrino detectors is reported. The KM3NeT/ARCA and KM3NeT/ORCA neutrino telescopes are sensitive to TeV muons originating mostly from primary cosmic rays with energies around 10 TeV. The predictions of state-of-the-art QCD models show that the deficit with respect to the data is constant in zenith angle; no dependency on the water overburden is observed. The observed deficit at a depth of several kilometres is compatible with the deficit seen in the comparison of the simulations and measurements at sea level.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Carretero, V., Cecchini, V., et al. (2025). Observation of an ultra-high-energy cosmic neutrino with KM3NeT. Nature, 638(8050), 376–382.
Abstract: The detection of cosmic neutrinos with energies above a teraelectronvolt (TeV) offers a unique exploration into astrophysical phenomena(1-3). Electrically neutral and interacting only by means of the weak interaction, neutrinos are not deflected by magnetic fields and are rarely absorbed by interstellar matter: their direction indicates that their cosmic origin might be from the farthest reaches of the Universe. High-energy neutrinos can be produced when ultra-relativistic cosmic-ray protons or nuclei interact with other matter or photons, and their observation could be a signature of these processes. Here we report an exceptionally high-energy event observed by KM3NeT, the deep-sea neutrino telescope in the Mediterranean Sea(4), which we associate with a cosmic neutrino detection. We detect a muon with an estimated energy of 120(-60)(+110) petaelectronvolts (PeV). In light of its enormous energy and near-horizontal direction, the muon most probably originated from the interaction of a neutrino of even higher energy in the vicinity of the detector. The cosmic neutrino energy spectrum measured up to now(5-7) falls steeply with energy. However, the energy of this event is much larger than that of any neutrino detected so far. This suggests that the neutrino may have originated in a different cosmic accelerator than the lower-energy neutrinos, or this may be the first detection of a cosmogenic neutrino(8), resulting from the interactions of ultra-high-energy cosmic rays with background photons in the Universe.
|