Vilella, E., Alonso, O., Trenado, J., Vila, A., Casanova, R., Vos, M., et al. (2012). A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking. Nucl. Instrum. Methods Phys. Res. A, 694, 199–204.
Abstract: It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.
|
Vijande, J., Ballester, F., Ouhib, Z., Granero, D., Pujades-Claumarchirant, M. C., & Perez-Calatayud, J. (2012). Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy. Brachytherapy, 11(6), 528–535.
Abstract: PURPOSE: The purpose of this work was to evaluate whether the delivered dose to the skin surface and at the prescription depth when using a Freiburg flap applicator is in agreement with the one predicted by the treatment planning system (TPS) using the TG-43 dose-calculation formalism. METHODS AND MATERIALS: Monte Carlo (MC) simulations and radiochromic film measurements have been performed to obtain dose distributions with the source located at the center of one of the spheres and between two spheres. Primary and scatter dose contributions were evaluated to understand the role played by the scatter component. A standard treatment plan was generated using MC- and TG-43-based TPS applying the superposition principle. RESULTS: The MC model has been validated by performing additional simulations in the same conditions but transforming air and Freiburg flap materials into water to match TG-43 parameters. Both dose distributions differ less than 1%. Scatter defect compared with TG-43 data is up to 15% when the source is located at the center of the sphere and up to 25% when the source is between two spheres. Maximum deviations between TPS- and MC-based distributions are of 5%. CONCLUSIONS: The deviations in the TG-43-based dose distributions for a standard treatment plan with respect to the MC dose distribution calculated taking into account the composition and shape of the applicator and the surrounding air are lower than 5%. Therefore, this study supports the validity of the TPS used in clinical practice. (C) 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
|
Vijande, J., Tedgren, A. C., Ballester, F., Baltas, D., Papagiannis, P., Rivard, M. J., et al. (2021). Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates. Phys. Imag. Radiat. Oncol., 19, 108–111.
Abstract: Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. Results: Over the survey period, 77% of the Ir-192 measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% +/- 1.15% for Ir-192 and -0.1% +/- 1.3% for Co-60. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. Conclusions: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.
|
Vijande, J., Carmona, V., Lliso, F., Ballester, F., & Perez-Calatayud, J. (2024). An efficient component of the redundancy calibration program to ensure equipment stability by assaying HDR Ir-192 sources at the time of replacement. J. Appl. Clin. Med. Phys, 25(12), e14509–5pp.
Abstract: BackgroundBrachytherapy (BT) treatments involving temporary high-dose rate (HDR) sources are extensively employed in clinical practice. Ensuring the consistency of all measurement equipment at the hospital level is crucial, requiring a robust redundancy and consistency program. This enables the institution to verify the stability of the dosimetry system over time.PurposeTo describe, justify, and analyze a component of the redundancy program of the calibration protocols followed by the Radiotherapy Department of the Hospital Universitari i Polit & egrave;cnic La Fe (Val & egrave;ncia, Spain) during the last 10 years for the case of HDR BT as an additional component to ensure long term stability of the measurement equipment.MethodsAt the time the HDR BT source is replaced, its Air Kerma Strength (SK) is measured. By comparing this value with the one obtained at the time of installation (corrected by decay), a clear determination of the stability of the measurement equipment can be performed.ResultsDifference between SK,vendor and SK,hosp as a function of the measurement date is reported for a 10 years' period. All measurements are well within the +/- 3% tolerance level recommended in current international guidelines. Percentage differences of SK,hosp values at the time of replacement compared to SK,hosp ones at the time when the source was installed are within the +/- 0.5% range, reflecting oscillations around a null deviation.ConclusionsThe method proposed allows any hospital to ensure a redundancy component of the long-term stability of all equipment involved in BT measurements in a very simple and time efficient manner. Additionally, it enables the hospital to maintain a detailed log of historical differences, facilitating the identification and correction of potential systematic deviations over time.
|
Vijande, J., Valcarce, A., Carames, T. F., & Garcilazo, H. (2013). Heavy hadron spectroscopy: A quark model perspective. Nucl. Phys. A, 914, 472–481.
Abstract: We present recent results of hadron spectroscopy and hadron-hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher order Fock space components in the hadron spectra and the connection of this extension with the hadron-hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory.
|
Vijande, J., Valcarce, A., Richard, J. M., & Sorba, P. (2016). Search for doubly-heavy dibaryons in a quark model. Phys. Rev. D, 94(3), 034038–6pp.
Abstract: We study the stability of hexaquark systems containing two heavy quarks and four light quarks within a simple quark model. No bound or metastable state is found. The reason stems from a delicate interplay between chromoelectric and chromomagnetic effects. Our calculation also provides information about anticharmed pentaquarks that are seemingly unbound in simple quark models.
|
Vijande, J., Valcarce, A., & Richard, J. M. (2012). Stability of hexaquarks in the string limit of confinement. Phys. Rev. D, 85(1), 014019–6pp.
Abstract: The stability of systems containing six quarks or antiquarks is studied within a simple string model inspired by the strong-coupling regime of quantum chromodynamics and used previously for tetraquarks and pentaquarks. We discuss both six-quark (q(6)) and three-quark-three-antiquark (q(3)($) over bar (3)) states. The quarks are assumed to be distinguishable and thus not submitted to antisymmetrization. It is found that the ground state of (q(6)) is stable against dissociation into two isolated baryons. For the case of (q(3)($) over bar (3)), our results indicate the existence of a bound state very close to the threshold. The investigations are extended to (q(3)Q(3)) and (Q(3) ($) over bar (3)) systems with two different constituent masses, and their stability is discussed as a function of the mass ratio.
|
Vijande, J., Valcarce, A., Carames, T. F., & Richard, J. M. (2014). Multiquark Systems. Few-Body Syst., 55(8-10), 675–681.
Abstract: In this talk we tackle the description of hadron spectroscopy in terms of the constituent quark model. We focus on the mesonic charm sector, where several of the new reported resonances seem to defy their classification as simple quark-antiquark states. We pay special attention to higher order Fock space components in describing excited states of the meson spectra in close connection with the hadron-hadron interaction. The main goal of the present study is a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory.
|
Vijande, J., & Valcarce, A. (2014). Unraveling the pattern of the XYZ mesons. Phys. Lett. B, 736, 325–328.
Abstract: We present a plausible mechanism for the origin of the XYZ mesons in the heavy meson spectra within a standard quark-model picture. We discuss the conditions required for the existence of four-quark bound states or resonances contributing to the heavy meson spectra, being either compact or molecular. We concentrate on charmonium and bottomonium spectra, where several new states, difficult to understand as simple quark-antiquark pairs, have been reported by different experimental collaborations. The pivotal role played by entangled meson-meson thresholds is emphasized.
|
Vijande, J., Valcarce, A., & Richard, J. M. (2013). Adiabaticity and color mixing in tetraquark spectroscopy. Phys. Rev. D, 87(3), 034040–5pp.
Abstract: We revisit the role of color mixing in the quark model calculation of tetraquark states, and compare simple pairwise potentials to more elaborate string models with three-and four-body forces. We attempt to disentangle the improved dynamics of confinement from the approximations made in the treatment of the internal color degrees of freedom.
|