|   | 
Details
   web
Records
Author Silva, J.E.G.; Maluf, R.V.; Olmo, G.J.; Almeida, C.A.S.
Title Braneworlds in f(Q) gravity Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 2 Pages 024033 - 15pp
Keywords
Abstract We propose a braneworld scenario in a modified symmetric teleparallel gravitational theory, where the dynamics for the gravitational field is encoded in the nonmetricity tensor rather than in the curvature. Assuming a single real scalar field with a sine-Gordon self-interaction, the generalized quadratic nonmetricity invariant Q controls the brane width while keeping the shape of the energy density. By considering power corrections of the invariant Q in the gravitational Lagrangian, the sine-Gordon potential is modified exhibiting new barriers and false vacuum. As a result, the domain wall brane obtains an inner structure, and it undergoes a splitting process. In addition, we also propose a nonminimal coupling between a bulk fermion field and the nonmetricity invariant Q. Such geometric coupling leads to a massless chiral fermion bound to the 3-brane and a stable tower of nonlocalized massive states.
Address (down) [Silva, J. E. G.] Univ Fed do Cariri UFCA, Ave Tenente Raimundo Rocha,Cidade Universitaria, BR-63048080 Juazeiro do Norte, CE, Brazil, Email: euclides.silva@ufca.edu.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000880673200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5410
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; De Romeri, V.; Ternes, C.A.
Title Reactor neutrino background in next-generation dark matter detectors Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 11 Pages 115026 - 7pp
Keywords
Abstract Third -generation dark matter detectors will be fully sensitive to the 8 B solar neutrino flux. Because of this, the characterization of such a background has been the subject of extensive analyses over the last few years. In contrast, little is known about the impact of reactor neutrinos. In this paper, we report on the implications of such a flux for dark matter direct -detection searches. We consider five potential detector deployment sites envisioned by the recently established XLZD Consortium: SURF, SNOLAB, Kamioka, LNGS, and Boulby. By using public reactor data, we construct five reactor clusters -involving about 100 currently operating commercial nuclear reactors each -and determine the net neutrino flux at each detector site. Assuming a xenon -based detector and a 50 ton -year exposure, we show that in all cases the neutrino event rate may be sizable, depending on energy recoil thresholds. Of all possible detector sites, SURF and LNGS are those with the smallest reactor neutrino background. On the contrary, SNOLAB and Boulby are subject to the strongest reactor neutrino fluxes, with Kamioka being subject to a more moderate background. Our findings demonstrate that reactor neutrino fluxes should be taken into account in the next round of dark matter searches. We argue that this background may be particularly relevant for directional detectors, provided they meet the requirements we have employed in this analysis.
Address (down) [Sierra, D. Aristizabal] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110 V,Ave Espana 1680, Valparaiso, Chile, Email: daristizabal@uliege.be;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001255433200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6167
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Herrero-Garcia, J.; Restrepo, D.; Vicente, A.
Title Diboson anomaly: Heavy Higgs resonance and QCD vectorlike exotics Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 1 Pages 015012 - 12pp
Keywords
Abstract The ATLAS Collaboration (and also CMS) has recently reported an excess over Standard Model expectations for gauge boson pair production in the invariant mass region 1.8-2.2 TeV. In light of these results, we argue that such a signal might be the first manifestation of the production and further decay of a heavy CP-even Higgs resulting from a type-I two Higgs doublet model. We demonstrate that in the presence of colored vectorlike fermions, its gluon fusion production cross section is strongly enhanced, with the enhancement depending on the color representation of the new fermion states. Our findings show that barring the color triplet case, any QCD “exotic” representation can fit the ATLAS result in fairly large portions of the parameter space. We have found that if the diboson excess is confirmed and this mechanism is indeed responsible for it, then the LHC Run-2 should find (i) a CP-odd scalar with mass below similar to 2.3 TeV, (ii) new colored states with masses below similar to 2 TeV, (iii) no statistically significant diboson events in the W(+/-)Z channel, (iv) events in the triboson channels W(+/-)W(-/+)Z and ZZZ with invariant mass amounting to the mass of the CP-odd scalar.
Address (down) [Sierra, D. Aristizabal] Univ Liege, Dept AGO, IFPA, Bat B5, B-4000 Liege 1, Belgium, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000368516100007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2535
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Staub, F.; Vicente, A.
Title Shedding light on the b -> s anomalies with a dark sector Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 1 Pages 015001 - 11pp
Keywords
Abstract The LHCb Collaboration has recently reported on some anomalies in b -> s transitions. In addition to discrepancies with the Standard Model (SM) predictions in some angular observables and branching ratios, an intriguing hint for lepton universality violation was found. Here we propose a simple model that extends the SM with a dark sector charged under an additional U(1) gauge symmetry. The spontaneous breaking of this symmetry gives rise to a massive Z' boson, which communicates the SM particles with a valid dark matter candidate, while solving the b -> s anomalies with contributions to the relevant observables.
Address (down) [Sierra, D. Aristizabal; Vicente, Avelino] Univ Liege, Dept Astrophys Geophys & Oceanog, IFPA, B-4000 Liege 1, Belgium, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000357492700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2297
Permanent link to this record
 

 
Author Sieber, H.; Kirpichnikov, D.; Voronchikhin, I.V.; Crivelli, P.; Gninenko, S.N.; Kirsanov, M.M.; Krasnikov, N.; Molina-Bueno, L.; Sekatskii, S.K.
Title Probing hidden sectors with a muon beam: Implication of spin-0 dark matter mediators for the muon (g-2) anomaly and the validity of the Weiszäcker-Williams approach Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 5 Pages 056018 - 11pp
Keywords
Abstract In addition to vector (V) type new particles extensively discussed previously, both CP-even (S) and CP-odd (P) spin-0 dark matter (DM) mediators can couple to muons and be produced in the bremsstrahlung reaction mu- + N -mu- + N + S(P). Their possible subsequent invisible decay into a pair of Dirac DM particles, S(P) -chi chi over bar , can be detected in fixed target experiments through missing energy signature. In this paper, we focus on the case of experiments using high-energy muon beams. For this reason, we derive the differential cross sections involved using the phase space Weiszacker-Williams approximation and compare them to the exact-tree-level calculations. The formalism derived can be applied in various experiments that could observe muon-spin-0 DM interactions. This can happen in present and future proton beam-dump experiments such as NA62, SHIP, HIKE, and SHADOWS; in muon fixed target experiments as NA64 mu, MUonE and M3; in neutrino experiments using powerful proton beams such as DUNE. In particular, we focus on the NA64 μexperiment case, which uses a 160 GeV muon beam at the CERN Super Proton Synchrotron accelerator. We compute the derived cross sections, the resulting signal yields and we discuss the experiment projected sensitivity to probe the relic DM parameter space and the (g – 2)mu anomaly favored region considering 1011 and 1013 muons on target.
Address (down) [Sieber, H.; Crivelli, P.] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: henri.hugo.sieber@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001106669600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5830
Permanent link to this record