toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Aad, G. et al); Bernabeu Verdu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia-Argos, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Operation and performance of the ATLAS semiconductor tracker Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P08009 - 73pp  
  Keywords Solid state detectors; Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.  
  Address (up) [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341927600037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1945  
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Santoyo, D.; Solaz, C.; Soldevila, U. doi  openurl
  Title Prototyping of hybrids and modules for the forward silicon strip tracking detector for the ATLAS Phase-II upgrade Type Journal Article
  Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 12 Issue Pages P05015 - 26pp  
  Keywords Si microstrip and pad detectors; Particle tracking detectors (Solid-state detectors); Solid state detectors  
  Abstract For the High-Luminosity upgrade of the Large Hadron Collider an increased instantaneous luminosity of up to 7.5 . 10(34) cm(-2) s(-1), leading to a total integrated luminosity of up to 3000 fb(-1), is foreseen. The current silicon and transition radiation tracking detectors of the ATLAS experiment will be unable to cope with the increased track densities and radiation levels, and will need to be replaced. The new tracking detector will consist entirely of silicon pixel and strip detectors. In this paper, results on the development and tests of prototype components for the new silicon strip detector in the forward regions (end-caps) of the ATLAS detector are presented. Flex-printed readout boards with fast readout chips, referred to as hybrids, and silicon detector modules are investigated. The modules consist of a hybrid glued onto a silicon strip sensor. The channels on both are connected via wire-bonds for readout and powering. Measurements of important performance parameters and a comparison of two possible readout schemes are presented. In addition, the assembly procedure is described and recommendations for further prototyping are derived.  
  Address (up) [Kuehn, S.] CERN, European Org Nucl Res, Expt Phys, Route Meyrin 385, CH-1211 Geneva 23, Switzerland, Email: susanne.kuehn@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405076000015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3221  
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila Serrano, U. url  doi
openurl 
  Title Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages T03004 - 22pp  
  Keywords Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Solid state detectors; Performance of High Energy Physics Detectors  
  Abstract In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.  
  Address (up) [Kuehn, S.] European Org Nucl Res, CERN, Geneva, Switzerland, Email: susanne.kuehn@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428146400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3530  
Permanent link to this record
 

 
Author Mandic, I.; Cindro, V.; Debevc, J.; Gorisek, A.; Hiti, B.; Kramberger, G.; Skomina, P.; Zavrtanik, M.; Mikuz, M.; Vilella, E.; Zhang, C.; Powell, S.; Franks, M.; Marco-Hernandez, R.; Steininger, H. url  doi
openurl 
  Title Study of neutron irradiation effects in Depleted CMOS detector structures Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 3 Pages P03030 - 13pp  
  Keywords Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Solid state detectors  
  Abstract In this paper the results of Edge-TCT and I-V measurements with passive test structures made in LFoundry 150 nm HV-CMOS process on p-type substrates with different initial resistivities ranging from 0.5 to 3 k Omega cm are presented. Samples were irradiated with reactor neutrons up to a fluence of 2.10(15) n(eq)/cm(2). The depletion depth was measured with Edge-TCT. The effective space charge concentration N-eff was estimated from the dependence of the depletion depth on bias voltage and studied as a function of neutron fluence. The dependence of N-eff on fluence changes with initial acceptor concentration in agreement with other measurements with p-type silicon. A long term accelerated annealing study of N-eff and detector current up to 1280 minutes at 60 degrees C was made. It was found that N-eff and current in reverse biased detector behave as expected for irradiated silicon.  
  Address (up) [Mandic, I; Cindro, V; Debevc, J.; Gorisek, A.; Hiti, B.; Kramberger, G.; Skomina, P.; Zavrtanik, M.; Mikuz, M.] Jozef Stefan Inst, Jamova 39, Ljubljana, Slovenia, Email: igor.mandic@ijs.si  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000784713600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5208  
Permanent link to this record
 

 
Author Loya Villalpando, A.A.; Martin-Albo, J.; Chen, W.T.; Guenette, R.; Lego, C.; Park, J.S.; Capasso, F. url  doi
openurl 
  Title Improving the light collection efficiency of silicon photomultipliers through the use of metalenses Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 11 Pages P11021 - 13pp  
  Keywords Optical detector readout concepts; Solid state detectors; Dark Matter detectors (WIMPS, axions, etc); Double-beta decay detectors  
  Abstract Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3 x 1 3 mm(2) SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay.  
  Address (up) [Villalpando, A. A. Loya; Martin-Albo, J.; Guenette, R.; Lego, C.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: aloyavil@caltech.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595650800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4634  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva