|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Helium identification with LHCb Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02010 - 23pp
Keywords dE/dx detectors; Ion identification systems; Large detector systems for particle and astroparticle physics; Particle identification methods
Abstract The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at root s = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb(-1). A total of around 10(5) helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10(12)). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.
Address (down) [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: rmoise@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6068
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Prompt and nonprompt ψ(2S) production in pPb collisions at √sNN = 8.16 TeV Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 111 - 52pp
Keywords QCD; Heavy Quark Production; Particle and Resonance Production; Hadron-Hadron Scattering
Abstract The production of psi(2S) mesons in proton-lead collisions at a centre-of-mass energy per nucleon pair of root s(NN) = 8.16TeV is studied with the LHCb detector using data corresponding to an integrated luminosity of 34 nb(-1). The prompt and nonprompt psi(2S) production cross-sections and the ratio of the psi(2S) to J/psi cross-section are measured as a function of the meson transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame, together with forward-to-backward ratios and nuclear modification factors. The production of prompt psi(2S) is observed to be more suppressed compared to pp collisions than the prompt J/psi production, while the nonprompt productions have similar suppression factors.
Address (down) [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: gianluca.zunica@epfl.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001207701100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6116
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Measurement of J/ψ-pair production in pp collisions at √s=13 TeV and study of gluon transverse-momentum dependent PDFs Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 088 - 40pp
Keywords Hadron-Hadron Scattering; Multi-Parton Interactions; QCD; Quarkonium
Abstract The production cross-section of J/psi pairs in proton-proton collisions at a centre-of-mass energy of root s = 13TeV is measured using a data sample corresponding to an integrated luminosity of 4.2 fb(-1) collected by the LHCb experiment. The measurement is performed with both J/psi mesons in the transverse momentum range 0 < p(T) < 14 GeV/c and rapidity range 2.0 < y < 4.5. The cross-section of this process is measured to be 16.36 +/- 0.28 (stat) +/- 0.88 (syst) nb. The contributions from single-parton scattering and double-parton scattering are separated based on the dependence of the cross-section on the absolute rapidity difference Delta y between the two J/psi mesons. The effective cross-section of double-parton scattering is measured to be sigma(eff) = 13.1 +/- 1.8 (stat) +/- 2.3 (syst) mb. The distribution of the azimuthal angle phi(CS) of one of the J/psi mesons in the Collins-Soper frame and the p(T)-spectrum of the J/psi pairs are also measured for the study of the gluon transverse-momentum dependent distributions inside protons. The extracted values of < cos4 phi(CS)> and < cos2 phi(CS)> are consistent with zero, but the presence of azimuthal asymmetry at a few percent level is allowed.
Address (down) [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Australia, Email: li.xu@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001194594600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6050
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Search for CP violation in the phase space of D0 → KS0 K± π∓ decays with the energy test Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 107 - 20pp
Keywords Charm Physics; CP Violation; Hadron-Hadron Scattering
Abstract A search for CP violation in D-0 -> (KSK+)-K-0 pi(-) and D-0 -> (KSK-)-K-0 pi(+) decays is reported. The search is performed using an unbinned model-independent method known as the energy test that probes local CP violation in the phase space of the decays. The data analysed correspond to an integrated luminosity of 5.4 fb(-1) collected in proton-proton collisions by the LHCb experiment at a centre-of-mass energy of root s = 13TeV, amounting to approximately 950 thousand and 620 thousand signal candidates for the D-0 -> (KSK-)-K-0 pi(+) and D-0 -> (KSK+)-K-0 pi(-) modes, respectively. The method is validated using D-0 -> K-pi(+)pi(-)pi(+) and D-0 -> K-S(0)pi(+)pi(-) decays, where CP-violating effects are expected to be negligible, and using background-enhanced regions of the signal decays. The results are consistent with CP symmetry in both the D-0 -> (KSK-)-K-0 pi(+) and the D-0 -> (KSK+)-K-0 pi(-) decays, with p-values for the hypothesis of no CP violation of 70% and 66%, respectively.
Address (down) [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Singla, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: gianluca.zunica@epfl.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001190072500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6124
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Study of Bc+ → χc π+ decays Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 173 - 30pp
Keywords B Physics; Branching fraction; Hadron-Hadron Scattering
Abstract A study of B-c(+) -> chi(c) pi(+) decays is reported using proton-proton collision data, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13TeV, corresponding to an integrated luminosity of 9 fb(-1). The decay B-c(+) -> chi(c2)pi(+) is observed for the first time, with a significance exceeding seven standard deviations. The relative branching fraction with respect to the B-c(+) -> J/psi pi(+) decay is measured to be BBc+ ->chi c2 pi+/BBc+ -> (J/psi pi+) = 0.37 +/- 0.06 +/- 0.02 +/- 0.01, where the first uncertainty is statistical, the second is systematic, and the third is due to the knowledge of the chi(c2) -> J/psi gamma branching fraction. No significant B-c(+) -> chi(+)(c1 pi) signal is observed and an upper limit for the relative branching fraction for the B-c(+) -> chi(c1)pi(+) and B-c(+) -> chi(c2)pi(+) decays of BBc+ ->chi c1 pi+/BBc+ -> chi(c2)pi(+) < 0.49 is set at the 90% confidence level.
Address (down) [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Liu, F. L.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: Ivan.Belyaev@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001183170300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6044
Permanent link to this record
 

 
Author Easa, H.; Gregoire, T.; Stolarski, D.; Cosme, C.
Title Baryogenesis and dark matter in multiple hidden sectors Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 7 Pages 075003 - 29pp
Keywords
Abstract We explore a mechanism for producing the baryon asymmetry and dark matter in models with multiple hidden sectors that are Standard -Model -like but with varying Higgs mass parameters. If the field responsible for reheating the Standard Model and the exotic sectors carries an asymmetry, it can be converted into a baryon asymmetry using the standard sphaleron process. A hidden sector with positive Higgs mass squared can accommodate dark matter with its baryon asymmetry, and the larger abundance of dark matter relative to baryons is due to dark sphalerons being active all the way down the hidden sector QCD scale. This scenario predicts that dark matter is clustered in large dark nuclei and gives a lower bound on the effective relativistic degrees of freedom, Delta N eff greater than or similar to 0 .05 , which may be observable in the nextgeneration cosmic microwave background experiment CMB-S4.
Address (down) [Easa, Hassan; Gregoire, Thomas; Stolarski, Daniel; Cosme, Catarina] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada, Email: Hassaneasa@cmail.carleton.ca;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224349300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6129
Permanent link to this record
 

 
Author Domcke, V.; Ema, Y.; Sandner, S.
Title Perturbatively including inhomogeneities in axion inflation Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 019 - 24pp
Keywords axions; inflation; particle physics- cosmology connection
Abstract Axion inflation, i.e. an axion-like inflaton coupled to an Abelian gauge field through a Chern-Simons interaction, comes with a rich and testable phenomenology. This is particularly true in the strong backreaction regime, where the gauge field production heavily impacts the axion dynamics. Lattice simulations have recently demonstrated the importance of accounting for inhomogeneities of the axion field in this regime. We propose a perturbative scheme to account for these inhomogeneities while maintaining high computational efficiency. Our goal is to accurately capture deviations from the homogeneous axion field approximation within the perturbative regime as well as self -consistently determine the onset of the nonperturbative regime.
Address (down) [Domcke, Valerie] CERN, Theoret Phys Dept, Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001185016600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6020
Permanent link to this record
 

 
Author Domcke, V.; Garcia-Cely, C.; Lee, S.M.; Rodd, N.L.
Title Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 128 - 51pp
Keywords Axions and ALPs; Early Universe Particle Physics
Abstract In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.
Address (down) [Domcke, Valerie; Lee, Sung Mook; Rodd, Nicholas L.] CERN, Theoret Phys Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001189228700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6049
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I., Zhuo, J.
Title Amplitude Analysis of the B0 -> K*0 μ+μ- Decay Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 13 Pages 131801 - 13pp
Keywords
Abstract An amplitude analysis of the B-0 -> K*(0) mu(+)mu(-) decay is presented using a dataset corresponding to an integrated luminosity of 4.7 fb(-1) of pp collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q(2)-unbinned amplitude analysis, where q(2) is the mu(+)mu(-) invariant mass squared. Long-distance contributions, which originate from nonfactorizable QCD processes, are systematically investigated, and the most accurate assessment to date of their impact on the physical observables is obtained. The pattern of measured corrections to the short-distance couplings is found to be consistent with previous analyses of b- to s-quark transitions, with the largest discrepancy from the standard model predictions found to be at the level of 1.8 standard deviations. The global significance of the observed differences in the decay is 1.4 standard deviations.
Address (down) [Dettori, F.; Fujii, Y.; Hadavizadeh, T.; Lane, J. J.; Litvinov, R.; Manca, G.; Saitta, B.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001201992300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6127
Permanent link to this record
 

 
Author Delgado, R.L.; Gomez-Ambrosio, R.; Martinez-Martin, J.; Salas-Bernardez, A.; Sanz-Cillero, J.J.
Title Production of two, three, and four Higgs bosons: where SMEFT and HEFT depart Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 037 - 45pp
Keywords Anomalous Higgs Couplings; Higgs Properties; Strongly Interacting Higgs; Electroweak Precision Physics
Abstract In this article we study the phenomenological implications of multiple Higgs boson production from longitudinal vector boson scattering in the context of effective field theories. We find compact representations for effective tree-level amplitudes with up to four final state Higgs bosons. Total cross sections are then computed for scenarios relevant at the LHC in which we find the general Higgs Effective Theory (HEFT) prediction avoids the heavy suppression observed in Standard Model Effective Field Theory (SMEFT).
Address (down) [Delgado, Rafael L.] Univ Politecn Madrid, Dept Matemat Aplicadas TIC, Nikola Tesla,s-n, Madrid 28031, Spain, Email: rafael.delgado@upm.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001177947600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6013
Permanent link to this record