toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author NOMAD Collaboration (Samoylov, O. et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Hernando, J. url  doi
openurl 
  Title A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment Type Journal Article
  Year 2013 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 876 Issue 2 Pages 339-375  
  Keywords Charm production; Strange quark content of the nucleon; Dimuon charm production; Neutrino interactions  
  Abstract (down) We present our new measurement of the cross-section for charm dimuon production in neutrino iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample – about 9 x 10(6) events after all analysis cuts – and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to similar to 2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of m(c)(m(c)) = 1.159 +/- 0.075 GeV/c(2) for the running mass of the charm quark in the (MS) over bar scheme and a strange quark sea suppression factor of kappa(s) = 0.591 +/- 0.019 at Q(2) = 20 GeV2/c(2).  
  Address [Bassompierre, G.; Gaillard, J. -M.; Gouanere, M.; Krasnoperov, A.; Mendiburu, J. -P.; Nedelec, P.; Pessard, H.; Sillou, D.] LAPP, Annecy, France, Email: Roberto.Petti@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325903700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1625  
Permanent link to this record
 

 
Author NOMAD Collaboration (Kullenberg, C.T. et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J. url  doi
openurl 
  Title A search for single photon events in neutrino interactions Type Journal Article
  Year 2012 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 706 Issue 4-5 Pages 268-275  
  Keywords Single photon; Neutrino; Neutral current; Coherent; Pion  
  Abstract (down) We present a search for neutrino induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is similar or equal to 25 GeV. The search is motivated by an excess of electron-like events in the 200-475 MeV energy region as reported by the MiniBooNE experiment. In NOMAD, photons are identified via their conversion to e(+)e(-) in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurring outside the fiducial volume. All three backgrounds are determined in situ using control data samples prior to opening the 'signal-box'. In the signal region, we observe 155 events with a predicted background of 129.2 +/- 8.5 +/- 3.3. We interpret this as null evidence for excess of single photon events, and set a limit. Assuming that the hypothetical single photon has a momentum distribution similar to that of a photon from the coherent pi(0) decay, the measurement yields an upper limit on single photon events, < 4.0 x 10(-4) per nu(mu) charged current event. Narrowing the search to events where the photon is approximately collinear with the incident neutrino, we observe 78 events with a predicted background of 76.6 +/- 4.9 +/- 1.9 yielding a more stringent upper limit, < 1.6 x 10(-4) per nu(mu) charged current event.  
  Address [Kullenberg, C. T.; Mishra, S. R.; Dimmery, D.; Tian, X. C.; Godley, A.; Kim, J. J.; Ling, J.; Petti, R.; Wu, Q.] Univ S Carolina, Columbia, SC 29208 USA, Email: sanjib@sc.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000299756800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 886  
Permanent link to this record
 

 
Author NEXT Collaboration (Renner, J. et al); Benlloch-Rodriguez, J.; Botas, A.; Ferrario, P.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Cervera-Villanueva, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Background rejection in NEXT using deep neural networks Type Journal Article
  Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 12 Issue Pages T01004 - 21pp  
  Keywords Analysis and statistical methods; Pattern recognition; cluster finding; calibration and fitting methods; Double-beta decay detectors; Time projection chambers  
  Abstract (down) We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.  
  Address [Renner, J.; Munoz Vidal, J.; Benlloch-Rodriguez, J. M.; Botas, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Carrion, J. V.; Cervera, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Monrabal, F.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: jrenner@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000395770200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2995  
Permanent link to this record
 

 
Author NEXT Collaboration (Azevedo, C.D.R. et al); Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 877 Issue Pages 157-172  
  Keywords Optical TPCs; Microscopic simulation; Xenon scintillation  
  Abstract (down) We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.  
  Address [Azevedo, C. D. R.] Univ Aveiro, I3N, Phys Dept, Aveiro, Portugal, Email: Diego.Gonzalez.Diaz@usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415128000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3371  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P. doi  openurl
  Title Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging Type Journal Article
  Year 2016 Publication Spectrochimica Acta Part B Abbreviated Journal Spectroc. Acta Pt. B  
  Volume 118 Issue Pages 6-13  
  Keywords PET; TOF; Liquid xenon; Energy resolution; High sensitivity; Coincidence resolution time (CRT); SiPMs  
  Abstract (down) We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.  
  Address [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, Paola] Univ Valencia, CSIC, IFIC, E-46003 Valencia, Spain, Email: gomez@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374073300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2631  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva