toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lessa, A.; Sanz, V. url  doi
openurl 
  Title Going beyond Top EFT Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 107 - 29pp  
  Keywords SMEFT; Dark Matter at Colliders; Supersymmetry  
  Abstract (down) We present a new way to interpret Top Standard Model measurements going beyond the SMEFT framework. Instead of the usual paradigm in Top EFT, where the main effects come from tails in momenta distributions, we propose an interpretation in terms of new physics which only shows up at loop-level. The effects of these new states, which can be lighter than required within the SMEFT, appear as distinctive structures at high momenta, but may be suppressed at the tails of distributions. As an illustration of this phenomena, we present the explicit case of a UV model with a Z \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} 2 symmetry, including a Dark Matter candidate and a top-partner. This simple UV model reproduces the main features of this class of signatures, particularly a momentum-dependent form factor with more structure than the SMEFT. As the new states can be lighter than in SMEFT, we explore the interplay between the reinterpretation of direct searches for colored states and Dark Matter, and Top measurements, made by ATLAS and CMS in the differential t t over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} final state. We also compare our method with what one would expect using the SMEFT reinterpretation, finding that using the full loop information provides a better discriminating power.  
  Address [Lessa, Andre] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: andre.lessa@ufabc.edu.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001205498200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6108  
Permanent link to this record
 

 
Author Nieves, J.; Feijoo, A.; Albaladejo, M.; Du, M.L. url  doi
openurl 
  Title Lowest-lying 1/2- and 3/2- ΛQ resonances: From the strange to the bottom sectors Type Journal Article
  Year 2024 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.  
  Volume 137 Issue Pages 104118 - 23pp  
  Keywords Heavy quark symmetry; Constituent quark-model; Molecule; Charmed; Bottomed  
  Abstract (down) We present a detailed study of the lowest-lying 1/2(-) and 3/2(-) Lambda Q resonances both in the heavy 2 2 quark (bottom and charm) and the strange sectors. We have paid special attention to the interplay between the constituent quark-model and chiral baryon-meson degrees of freedom, which are coupled using a unitarized scheme consistent with leading-order heavy quark symmetries. We show that the Lambda(b)(5912) [J(P) = 1/2(-)], Lambda(b)(5920) [J(P) = 3/2(-)] and the Lambda(c)(2625) [J(P) = 3/2-], and the Lambda(1520) [J(P) = 3/2(-)] admitting larger breaking corrections, are heavyquark spin-flavor siblings. They can be seen as dressed quark-model states with Sigma Q(()*()) pi molecular components of the order of 30%. The J(P)=1(-) Lambda(2595) has, however, a higher molecular 2 probability of at least 50%, and even values greater than 70% can be easily accommodated. This is because it is located almost on top of the threshold of the Sigma(c)pi pair, which largely influences its properties. Although the light degrees of freedom in this resonance would be coupled to spin-parity 1(-) as in the Lambda(b)(5912), Lambda(b)(5920) and Lambda(c)(2625), the Lambda(c)(2595) should not be considered as a heavy-quark spin-flavor partner of the former ones. We also show that the Lambda(1405) chiral two-pole pattern does not have analogs in the 1 – charmed and bottomed sectors, because the 2 N D-(*()) and N (B) over bar (()*()) channels do not play for heavy quarks the decisive role that the N (K) over bar does in the strange sector, and the notable influence of the bare quark-model states for the charm and bottom resonances. Finally, we predict the existence of two Lambda(b)(6070) and two Lambda(c)(2765) heavy-quark spin and flavor sibling odd parity states.  
  Address [Nieves, J.; Feijoo, A.; Albaladejo, M.] Inst Fis Corpuscular, Ctr Mixto, CSIC UV, Valencia, Spain, Email: jmnieves@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001243410100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6153  
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.; Sanchez-Velez, R. url  doi
openurl 
  Title Examining the sensitivity of FASERν to generalized neutrino interactions Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 102 - 25pp  
  Keywords Non-Standard Neutrino Properties; Neutrino Interactions; Electroweak Precision Physics  
  Abstract (down) We investigate the sensitivity of the FASER nu detector, a novel experimental setup at the LHC, to probe and constrain generalized neutrino interactions (GNI). Employing a comprehensive theoretical framework, we model the effects of generalized neutrino interactions on neutrino-nucleon deep inelastic scattering processes within the FASER nu detector. By considering all the neutrino channels produced at the LHC, we perform a statistical analysis to determine the sensitivity of FASER nu to constrain these interactions. Our results demonstrate that FASER nu can place stringent constraints on the GNI effective couplings. Additionally, we study the relation between GNI and a minimal Leptoquark model where the SM is augmented by a singlet Leptoquark with hypercharge 1/3. We have found that the sensitivities for various combinations of the Leptoquark Yukawa couplings are approximately O(1), particularly when considering a Leptoquark mass in the TeV range.  
  Address [Escrihuela, F. J.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001255987500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6176  
Permanent link to this record
 

 
Author Barenboim, G.; Calatayud-Cadenillas, A.M.; Gago, A.M.; Ternes, C.A. url  doi
openurl 
  Title Quantum decoherence effects on precision measurements at DUNE and T2HK Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 852 Issue Pages 138626 - 11pp  
  Keywords  
  Abstract (down) We investigate the potential impact of neutrino quantum decoherence on the precision measurements of standard neutrino oscillation parameters in the DUNE and T2HK experiments. We show that the measurement of delta(CP), sin(2) theta(13) and sin(2) theta(23) is stronger effected in DUNE than in T2HK. On the other hand, DUNE would have a better sensitivity than T2HK to observe decoherence effects. By performing a combined analysis of DUNE and T2HK we show that a robust measurement of standard parameters would be possible, which is not guaranteed with DUNE data alone.  
  Address [Barenboim, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001229361000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6131  
Permanent link to this record
 

 
Author Servant, G.; Simakachorn, P. url  doi
openurl 
  Title Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 103538 - 24pp  
  Keywords  
  Abstract (down) We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.  
  Address [Servant, Geraldine] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: peera.simakachorn@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001238459100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6150  
Permanent link to this record
 

 
Author Di Bari, P.; King, S.F.; Hossain Rahat, M. url  doi
openurl 
  Title Gravitational waves from phase transitions and cosmic strings in neutrino mass models with multiple majorons Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 068 - 31pp  
  Keywords Cosmology of Theories BSM; Early Universe Particle Physics; Phase Transitions in the Early Universe  
  Abstract (down) We explore the origin of Majorana masses within the majoron model and how this can lead to the generation of a distinguishable primordial stochastic background of gravitational waves. We first show how in the simplest majoron model only a contribution from cosmic string can be within the reach of planned experiments. We then consider extensions containing multiple complex scalars, demonstrating how in this case a spectrum comprising contributions from both a strong first order phase transition and cosmic strings can naturally emerge. We show that the interplay between multiple scalar fields can amplify the phase transition signal, potentially leading to double peaks over the wideband sloped spectrum from cosmic strings. We also underscore the possibility of observing such a gravitational wave background to provide insights into the reheating temperature of the universe. We conclude highlighting how the model can be naturally combined with scenarios addressing the origin of matter of the universe, where baryogenesis occurs via leptogenesis and a right-handed neutrino plays the role of dark matter.  
  Address [Di Bari, Pasquale; King, Stephen F.; Rahat, Moinul Hossain] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, England, Email: P.Di-Bari@soton.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001256020200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6182  
Permanent link to this record
 

 
Author del Rio, A.; Ester, E.A. url  doi
openurl 
  Title Electrically charged black hole solutions in semiclassical gravity and dynamics of linear perturbations Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 105022 - 23pp  
  Keywords  
  Abstract (down) We explore quantum corrections of electrically charged black holes subject to vacuum polarization effects of fermion fields in QED. Solving this problem exactly is challenging so we restrict to perturbative corrections that one can obtain using the heat kernel expansion in the one -loop effective action for electrons. Starting from the corrections originally computed by Drummond and Hathrell, we solve the full semiclassical Einstein -Maxwell system of coupled equations to leading order in Planck 's constant and find a new electrically charged, static black hole solution. To probe these quantum corrections, we study electromagnetic and gravitational (axial) perturbations on this background and derive the coupled system of Regge-Wheeler master equations that govern the propagation of these waves. In the classical limit, our results agree with previous findings in the literature. We finally compare these results with those that one can obtain by working out the Euler-Heisenberg effective action. We find again a new electrically charged static black hole spacetime and derive the coupled system of Regge-Wheeler equations governing the propagation of axial electromagnetic and gravitational perturbations. Results are qualitatively similar in both cases. We briefly discuss some challenges found in the numerical computation of the quasinormal mode frequency spectra when quantum corrections are included.  
  Address [del Rio, Adrian] Univ Valencia, Dept Fis Teor, CSIC, Dr Moliner 50, Burjassot 46100, Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001239211500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6151  
Permanent link to this record
 

 
Author Easa, H.; Gregoire, T.; Stolarski, D.; Cosme, C. url  doi
openurl 
  Title Baryogenesis and dark matter in multiple hidden sectors Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 7 Pages 075003 - 29pp  
  Keywords  
  Abstract (down) We explore a mechanism for producing the baryon asymmetry and dark matter in models with multiple hidden sectors that are Standard -Model -like but with varying Higgs mass parameters. If the field responsible for reheating the Standard Model and the exotic sectors carries an asymmetry, it can be converted into a baryon asymmetry using the standard sphaleron process. A hidden sector with positive Higgs mass squared can accommodate dark matter with its baryon asymmetry, and the larger abundance of dark matter relative to baryons is due to dark sphalerons being active all the way down the hidden sector QCD scale. This scenario predicts that dark matter is clustered in large dark nuclei and gives a lower bound on the effective relativistic degrees of freedom, Delta N eff greater than or similar to 0 .05 , which may be observable in the nextgeneration cosmic microwave background experiment CMB-S4.  
  Address [Easa, Hassan; Gregoire, Thomas; Stolarski, Daniel; Cosme, Catarina] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada, Email: Hassaneasa@cmail.carleton.ca;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001224349300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6129  
Permanent link to this record
 

 
Author Figueroa, D.G.; Pieroni, M.; Ricciardone, A.; Simakachorn, P. url  doi
openurl 
  Title Cosmological Background Interpretation of Pulsar Timing Array Data Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 17 Pages 171002 - 9pp  
  Keywords  
  Abstract (down) We discuss the interpretation of the detected signal by pulsar timing array (PTA) observations as a gravitational wave background of cosmological origin. We combine NANOGrav 15-years and EPTADR2new datasets and confront them against backgrounds from supermassive black hole binaries (SMBHBs), and cosmological signals from inflation, cosmic (super)strings, first-order phase transitions, Gaussian and non-Gaussian large scalar fluctuations, and audible axions. We find that scalar-induced, and to a lesser extent audible axion and cosmic superstring signals, provide a better fit than SMBHBs. These results depend, however, on modeling assumptions, so further data and analysis are needed to reach robust conclusions. Independently of the signal origin, the data strongly constrain the parameter space of cosmological signals, for example, setting an upper bound on primordial non-Gaussianity at PTA scales as jfraj less than or similar to 2.34 at 95% C.L.  
  Address [Figueroa, Daniel G.; Simakachorn, Peera] CSIC, Inst Fis Corpuscular, Valencia 46980, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001266039300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6188  
Permanent link to this record
 

 
Author Du, M.L.; Filin, A.; Baru, V.; Dong, X.K.; Epelbaum, E.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Nieves, J.; Wang, Q. url  doi
openurl 
  Title Role of Left-Hand Cut Contributions on Pole Extractions from Lattice Data: Case Study for Tcc(3875)+ Type Journal Article
  Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 131 Issue 13 Pages 131903 - 7pp  
  Keywords  
  Abstract (down) We discuss recent lattice data for the T-cc(3875)(+) state to stress, for the first time, a potentially strong impact of left-hand cuts from the one-pion exchange on the pole extraction for near-threshold exotic states. In particular, if the left-hand cut is located close to the two-particle threshold, which happens naturally in the DD* system for the pion mass exceeding its physical value, the effective-range expansion is valid only in a very limited energy range up to the cut and as such is of little use to reliably extract the poles. Then, an accurate extraction of the pole locations requires the one-pion exchange to be implemented explicitly into the scattering amplitudes. Our findings are general and potentially relevant for a wide class of hadronic near-threshold states.  
  Address [Du, Meng-Lin] Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001255049200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva