toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Strege, C.; Bertone, G.; Besjes, G.J.; Caron, S.; Ruiz de Austri, R.; Strubig, A.; Trotta, R. url  doi
openurl 
  Title Profile likelihood maps of a 15-dimensional MSSM Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 081 - 59pp  
  Keywords Supersymmetry Phenomenology  
  Abstract (up) We present statistically convergent profile likelihood maps obtained via global fits of a phenomenological Minimal Supersymmetric Standard Model with 15 free parameters (the MSSM-15), based on over 250M points. We derive constraints on the model parameters from direct detection limits on dark matter, the Planck relic density measurement and data from accelerator searches. We provide a detailed analysis of the rich phenomenology of this model, and determine the SUSY mass spectrum and dark matter properties that are preferred by current experimental constraints. We evaluate the impact of the measurement of the anomalous magnetic moment of the muon (g – 2) on our results, and provide an analysis of scenarios in which the lightest neutralino is a subdominant component of the dark matter. The MSSM-15 parameters are relatively weakly constrained by current data sets, with the exception of the parameters related to dark matter phenomenology (M-1, M-2, mu), which are restricted to the sub-TeV regime, mainly due to the relic density constraint. The mass of the lightest neutralino is found to be < 1.5TeV at 99% C.L., but can extend up to 3 TeV when excluding the g – 2 constraint from the analysis. Low-mass bino-like neutralinos are strongly favoured, with spin-independent scattering cross-sections extending to very small values, similar to 10(-20) pb. ATLAS SUSY null searches strongly impact on this mass range, and thus rule out a region of parameter space that is outside the reach of any current or future direct detection experiment. The best-fit point obtained after inclusion of all data corresponds to a squark mass of 2.3 TeV, a gluino mass of 2.1 TeV and a 130 GeV neutralino with a spin-independent cross-section of 2.4 x 10(-10) pb, which is within the reach of future multi-ton scale direct detection experiments and of the upcoming LHC run at increased centre-of-mass energy.  
  Address [Strege, C.; Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Imperial Ctr Inference & Cosmol, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342069700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1934  
Permanent link to this record
 

 
Author Staub, F.; Porod, W.; Herrmann, B. url  doi
openurl 
  Title The electroweak sector of the NMSSM at the one-loop level Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 040 - 50pp  
  Keywords Supersymmetry Phenomenology  
  Abstract (up) We present the electroweak spectrum for the Next-to-Minimal Supersymmetric Standard Model at the one-loop level, e. g. the masses of Higgs bosons, sleptons, charginos and neutralinos. For the numerical evaluation we present a mSUGRA variant with non-universal Higgs mass parameters squared and we compare our results with existing ones in the literature. Moreover, we briefly discuss the implications of our results for the calculation of the relic density.  
  Address [Staub, Florian; Porod, Werner; Herrmann, Bjoern] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: florian.staub@physik.uni-wuerzburg.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284146800040 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 310  
Permanent link to this record
 

 
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Strege, C.; Trotta, R. url  doi
openurl 
  Title Global fits of the cMSSM including the first LHC and XENON100 data Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 015 - 23pp  
  Keywords dark matter theory; supersymmetry and cosmology  
  Abstract (up) We present updated global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM), including the most recent constraints from the ATLAS and CMS detectors at the LHC, as well as the most recent results of the XENON100 experiment. Our robust analysis takes into account both astrophysical and hadronic uncertainties that enter in the calculation of the rate of WIMP-induced recoils in direct detection experiment. We study the consequences for neutralino Dark Matter, and show that current direct detection data already allow to robustly rule out the so-called Focus Point region, therefore demonstrating the importance of particle astrophysics experiments in constraining extensions of the Standard Model of Particle Physics. We also observe an increased compatibility between results obtained from a Bayesian and a Frequentist statistical perspective. We find that upcoming ton-scale direct detection experiments will probe essentially the entire currently favoured region (at the 99% level), almost independently of the statistical approach used. Prospects for indirect detection of the cMSSM are further reduced.  
  Address [Bertone, Gianfranco] Univ Amsterdam, GRAPPA Inst, NL-1090 GL Amsterdam, Netherlands, Email: gf.bertone@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 936  
Permanent link to this record
 

 
Author Jeong, K.S.; Park, W.I. url  doi
openurl 
  Title Cosmology with a supersymmetric local B – L model Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 016 - 34pp  
  Keywords cosmological phase transitions; gravitational waves / sources; physics of the early universe; supersymmetry and cosmology  
  Abstract (up) We propose a minimal gauged U(1)(B-L) extension of the minimal supersymmetric Standard Model (MSSM) which resolves the cosmological moduli problem via thermal inflation, and realizes late-time Affleck-Dine leptogensis so as to generate the right amount of baryon asymmetry at the end of thermal inflation. The present relic density of dark matter can be explained by sneutrinos, MSSM neutralinos, axinos, or axions. Cosmic strings from U(1)(B-L) breaking are very thick, and so the expected stochastic gravitational wave background from cosmic string loops has a spectrum different from the one in the conventional Abelian-Higgs model, as would be distinguishable at least at LISA and DECIGO. The characteristic spectrum is due to a flat potential, and may be regarded as a hint of supersymmetry. Combined with the resolution of moduli problem, the expected signal of gravitational waves constrains the U(1)(B-L) breaking scale to be O(10(12-13)) GeV. Interestingly, our model provides a natural possibility for explaining the observed ultra-high-energy cosmic rays thanks to the fact that the core width of strings in our scenario is very large, allowing a large enhancement of particle emissions from the cusps of string loops. Condensation of LHu flat-direction inside of string cores arises inevitably and can also be the main source of the ultra-high-energy cosmic rays accompanied by ultra-high-energy lightest supersymmetric particles.  
  Address [Jeong, Kwang Sik] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea, Email: ksjeong@pusan.ac.kr;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001149204000015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5992  
Permanent link to this record
 

 
Author Ruiz de Austri, R.; Perez de los Heros, C. url  doi
openurl 
  Title Impact of nucleon matrix element uncertainties on the interpretation of direct and indirect dark matter search results Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 049 - 19pp  
  Keywords dark matter theory; dark matter experiments; supersymmetry and cosmology  
  Abstract (up) We study in detail the impact of the current uncertainty in nucleon matrix elements on the sensitivity of direct and indirect experimental techniques for dark matter detection. We perform two scans in the framework of the cMSSM: one using recent values of the pion-sigma term obtained from Lattice QCD, and the other using values derived from experimental measurements. The two choices correspond to extreme values quoted in the literature and reflect the current tension between different ways of obtaining information about the structure of the nucleon. All other inputs in the scans, astrophysical and from particle physics, are kept unchanged. We use two experiments, XENON100 and IceCube, as benchmark cases to illustrate our case. We find that the interpretation of dark matter search results from direct detection experiments is more sensitive to the choice of the central values of the hadronic inputs than the results of indirect search experiments. The allowed regions of cMSSM parameter space after including XENON100 constrains strongly differ depending on the assumptions on the hadronic matrix elements used. On the other hand, the constraining potential of IceCube is almost independent of the choice of these values.  
  Address [Ruiz de Austri, R.] IFIC UV CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: rruiz@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327843900050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1674  
Permanent link to this record
 

 
Author Cannoni, M.; Ellis, J.; Gomez, M.E.; Lola, S.; Ruiz de Austri, R. url  doi
openurl 
  Title Supersymmetry searches in GUT models with non-universal scalar masses Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 041 - 23pp  
  Keywords particle physics – cosmology connection; supersymmetry and cosmology  
  Abstract (up) We study SO(10). SU(5) and flipped SU(5) GUT models with non-universal soft supersynrimetry-breaking scalar masses, exploring how they are constrained by LIIC super-synrimetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the-various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of (t) over tilde (1-chi) coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E-T, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CIA gamma-ray searches.  
  Address [Cannoni, M.; Gomez, M. E.] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, Huelva 21071, Spain, Email: mirco.ccannoni@dfa.uhu.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375608200043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2674  
Permanent link to this record
 

 
Author Bartl, A.; Eberl, H.; Herrmann, B.; Hidaka, K.; Majerotto, W.; Porod, W. url  doi
openurl 
  Title Impact of squark generation mixing on the search for squarks decaying into fermions at LHC Type Journal Article
  Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 698 Issue 5 Pages 380-388  
  Keywords Supersymmetry; Squark; Flavour violation; LHC  
  Abstract (up) We study the effect of squark generation mixing on squark production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the effect can be very large despite the very strong constraints on quark-flavour violation (QFV) from experimental data on B mesons. We find that the two lightest up-type squarks (u) over bar (1.2) can have large branching ratios for the decays into c (chi) over bar (0)(1) and t (chi) over bar (0)(1) at the same time due to squark generation mixing, leading to QFV signals 'pp -> c (t) over bar (t (c) over bar) + missing-E-T + X' with a significant rate. The observation of this remarkable signature would provide a powerful test of supersymmetric QFV at LHC. This could have a significant impact on the search for squarks and the determination of the underlying MSSM parameters.  
  Address [Hidaka, K.] Tokyo Gakugei Univ, Dept Phys, Tokyo 1848501, Japan, Email: hidaka@u-gakugei.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290185500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 630  
Permanent link to this record
 

 
Author Esteves, J.N.; Romao, J.C.; Hirsch, M.; Vicente, A.; Porod, W.; Staub, F. url  doi
openurl 
  Title LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 077 - 44pp  
  Keywords Supersymmetry Phenomenology  
  Abstract (up) We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric “pure seesaw” models, both, LFV and slepton mass splittings, occur not only in the left-but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as Br((tau) over bar (R) -> μchi(0)(1))/Br((tau) over bar (L) -> μchi(0)(1)) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay mu(+) -> e(+)gamma, A similar to [0, 1], which differs from the pure seesaw “prediction” A = 1. Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.  
  Address [Esteves, J. N.; Romao, J. C.] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: joaomest@cftp.ist.utl.pt  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285964200015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 532  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva