toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bonilla, C.; Lamprea, J.M.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Flavour-symmetric type-II Dirac neutrino seesaw mechanism Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 779 Issue Pages 257-261  
  Keywords Neutrino masses and mixing; Flavour physics  
  Abstract (up) We propose a Standard Model extension with underlying A(4) flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the “golden” flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit[ 1] we derive restrictions on the oscillation parameters, such as a correlation between delta(CP) and m(nu lightest).  
  Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429098900032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3566  
Permanent link to this record
 

 
Author Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Kovalenko, S.; Schmidt, I. url  doi
openurl 
  Title Sequentially loop suppressed fermion masses from a single discrete symmetry Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 043 - 24pp  
  Keywords Beyond Standard Model; Neutrino Physics; Quark Masses and SM Parameters  
  Abstract (up) We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.  
  Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000540500300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4430  
Permanent link to this record
 

 
Author Ayala, C.; Cvetic, G. url  doi
openurl 
  Title anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models Type Journal Article
  Year 2016 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 199 Issue Pages 114-117  
  Keywords Analytic (holomorphic) QCD coupling; Fractional Analytic Perturbation Theory; Two-delta analytic QCD model; Massive Perturbation Theory; Perturbative QCD; Renormalization group evolution  
  Abstract (up) We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings A(v)(Q(2)) for complex or real squared momenta Q(2). These couplings are holomorphic analogs of the powers a(Q(2))(v) of the underlying perturbative QCD (pQCD) coupling a(Q(2)) equivalent to alpha(s)(Q(2))/pi, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 delta anQCD), and Massive Perturbation Theory (MPT). The index v can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetic, 2015), but are now written in Fortran. Program summary Program title: AanQCDext Catalogue identifier: AEYKv10 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYICv1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12105 No. of bytes in distributed program, including test data, etc.: 98822 Distribution format: tar.gz Programming language: Fortran. Computer: Any work-station or PC where Fortran 95/200312008 (gfortran) is running. Operating system: Operating system Linux (Ubuntu and Scientific Linux), Windows (in all cases using gfortran). Classification: 11.1, 11.5. Nature of problem: Calculation of values of the running analytic couplings A(v)(Q(2); N-f) for general complex squared momenta Q(2) equivalent to -q(2), in three analytic QCD models, where A(v)(Q(2); N-f) is the analytic (holomorphic) analog of the power (alpha(s)(Q(2); N-f)/pi)(v). Here, A(v)(Q(2); N-f) is a holomorphic function in the Q(2) complex plane, with the exception of the negative semiaxis (-infinity, -M-thr(2)], reflecting the analyticity properties of the spacelike renormalization invariant quantities D(Q(2)) in QCD. In contrast, the perturbative QCD power (alpha(s)(Q(2); N-f)/pi)(v) has singularities even outside the negative semiaxis (Landau ghosts). The three considered models are: Analytic Perturbation theory (APT); Two-delta analytic QCD (2 delta anQCD); Massive Perturbation Theory (MPT). We refer to Ref. [1] for more details and literature. Solution method: The Fortran programs for FAPT and 2 delta anQCD models contain routines and functions needed to perform two-dimensional numerical integrations involving the spectral function, in order to evaluate A(v)(Q(2)) couplings. In MPT model, one-dimensional numerical integration involving A(1)(Q(2)) is sufficient to evaluate any A(v)(Q(2)) coupling. Restrictions: For unphysical choices of the input parameters the results are meaningless. When Q(2) is close to the cut region of the couplings (Q(2) real negative), the calculations can take more time and can have less precision. Running time: For evaluation of a set of about 10 related couplings, the times vary in the range t similar to 10(1)-10(2) s. MPT requires less time, t similar to 1-10(1) s. References: [1] C. Ayala and G. Cvetic, anQCD: a Mathematica package for calculations in general analytic QCD models, Comput. Phys. Commun. 190 (2015) 182.  
  Address [Ayala, Cesar] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: c.ayala86@gmail.com;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367113200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2501  
Permanent link to this record
 

 
Author Bernardoni, F.; Blossier, B.; Bulava, J.; Della Morte, M.; Fritzsch, P.; Garron, N.; Gerardin, A.; Heitger, J.; von Hippel, G.; Simma, H.; Sommer, R. url  doi
openurl 
  Title The b-quark mass from non-perturbative N-f=2 Heavy Quark Effective Theory at O(1/m(h)) Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 730 Issue Pages 171-177  
  Keywords Lattice QCD; Heavy Quark Effective Theory; b-quark mass  
  Abstract (up) We report our final estimate of the b-quark mass from N-f = 2 lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at O(1/m(h)). Treating systematic and statistical errors in a conservative manner, we obtain (m) over bar ((MS) over bar)(b) (2 GeV) = 4.88(15) GeV after an extrapolation to the physical point.  
  Address [Bernardoni, Fabio; Simma, Hubert; Sommer, Rainer] DESY, NIC, D-15738 Zeuthen, Germany  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333506400031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1742  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract (up) We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
 

 
Author Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J. url  doi
openurl 
  Title How to relax the cosmological neutrino mass bound Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 049 - 18pp  
  Keywords neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS  
  Abstract (up) We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.  
  Address [Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466578400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4001  
Permanent link to this record
 

 
Author Figueroa, D.G.; Raatikainen, S.; Rasanen, S.; Tomberg, E. url  doi
openurl 
  Title Implications of stochastic effects for primordial black hole production in ultra-slow-roll inflation Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 027 - 48pp  
  Keywords inflation; primordial black holes; dark matter theory; massive black holes  
  Abstract (up) We study the impact of stochastic noise on the generation of primordial black hole (PBH) seeds in ultra-slow-roll (USR) inflation with numerical simulations. We consider the non-linearity of the system by consistently taking into account the noise dependence on the inflaton perturbations, while evolving the perturbations on the coarse-grained background affected by the noise. We capture in this way the non-Markovian nature of the dynamics, and demonstrate that non-Markovian effects are subleading. Using the Delta N formalism, we find the probability distribution P(R) of the comoving curvature perturbation R. We consider inflationary potentials that fit the CMB and lead to PBH dark matter with i) asteroid, ii) solar, or iii) Planck mass, as well as iv) PBHs that form the seeds of supermassive black holes. We find that stochastic effects enhance the PBH abundance by a factor of O(10)-O(10(8)), depending on the PBH mass. We also show that the usual approximation, where stochastic kicks depend only on the Hubble rate, either underestimates or overestimates the abundance by orders of magnitude, depending on the potential. We evaluate the gauge dependence of the results, discuss the quantum-to-classical transition, and highlight open issues of the application of the stochastic formalism to USR inflation.  
  Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueoa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000804493000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5239  
Permanent link to this record
 

 
Author de Medeiros Varzielas, I.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O. url  doi
openurl 
  Title Controlled flavor violation in the MSSM from a unified Delta(27) flavor symmetry Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 047 - 22pp  
  Keywords Beyond Standard Model; Supersymmetric Standard Model; Quark Masses and SM Parameters  
  Abstract (up) We study the phenomenology of a unified supersymmetric theory with a flavor symmetry Delta(27). The model accommodates quark and lepton masses, mixing angles and CP phases. In this model, the Dirac and Majorana mass matrices have a unified texture zero structure in the (1, 1) entry that leads to the Gatto-Sartori-Tonin relation between the Cabibbo angle and ratios of the masses in the quark sectors, and to a natural departure from zero of the theta 13(l) angle in the lepton sector. We derive the flavor structures of the trilinears and soft mass matrices, and show their general non-universality. This causes large flavor violating effects. As a consequence, the parameter space for this model is constrained, allowing it to be (dis)proven by flavor violation searches in the next decade. Although the results are model specific, we compare them to previous studies to show similar flavor effects (and associated constraints) are expected in general in supersymmetric flavor models, and may be used to distinguish them.  
  Address [Varzielas, Ivo de Medeiros] Univ Lisbon, Inst Super Tecn, Dept Fis, CFTP, Ave Rovisco Pais 1, P-1049 Lisbon, Portugal, Email: ivo.de@udo.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444676300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3735  
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study Type Journal Article
  Year 2017 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 19 Issue Pages 093005 - 14pp  
  Keywords neutrino masses and mixings; neutrino oscillations; neutrino interactions  
  Abstract (up) When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.  
  Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000410457100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3292  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva