ATLAS Collaboration(Aad, G. et al), Amoros, G., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Ferrer, A., et al. (2012). Measurement of the azimuthal anisotropy for charged particle production in root s(NN)=2.76 TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C, 86(1), 014907–41pp.
Abstract: Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at root sNN = 2.76 TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 μb(-1). This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle relative to the reaction plane, with the coefficients v(n) denoting the magnitude of the anisotropy. Significant v(2)-v(6) values are obtained as a function of transverse momentum (0.5 < p(T) < 20 GeV), pseudorapidity (|eta| < 2.5), and centrality using an event plane method. The v(n) values for n >= 3 are found to vary weakly with both eta and centrality, and their p(T) dependencies are found to follow an approximate scaling relation, v(n)(1/n)(p(T)) proportional to v(2)(1/2)(p(T)), except in the top 5% most central collisions. A Fourier analysis of the charged particle pair distribution in relative azimuthal angle (Delta phi = phi(a)-phi(b)) is performed to extract the coefficients v(n,n) = < cos n Delta phi >. For pairs of charged particles with a large pseudorapidity gap (|Delta eta = eta(a) – eta(b)| > 2) and one particle with p(T) < 3 GeV, the v(2,2)-v(6,6) values are found to factorize as v(n,n)(p(T)(a), p(T)(b)) approximate to v(n) (p(T)(a))v(n)(p(T)(b)) in central and midcentral events. Such factorization suggests that these values of v(2,2)-v(6,6) are primarily attributable to the response of the created matter to the fluctuations in the geometry of the initial state. A detailed study shows that the v(1,1)(p(T)(a), p(T)(b)) data are consistent with the combined contributions from a rapidity-even v(1) and global momentum conservation. A two-component fit is used to extract the v(1) contribution. The extracted v(1) isobserved to cross zero at pT approximate to 1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v(3), and decreases at higher p(T).
|
Das, B. et al, & Algora, A. (2022). Nature of seniority symmetry breaking in the semimagic nucleus Ru-94. Phys. Rev. C, 105(3), L031304–6pp.
Abstract: Direct lifetime measurements via gamma -gamma coincidences using a fast timing detector array consisting of LaBr3(Ce) scintillators has been applied to determine the lifetime of low-lying states in the semimagic (N = 50) nucleus Ru-94. The experiment was carried out as the first in a series of “FAIR-0” experiments with the DESPEC experimental setup at the Facility for Antiproton and Ion Research (FAIR). Excited states in Ru-94 were populated primarily via the beta-delayed proton emission of Pd-95 nuclei, produced in the projectile fragmentation of an 850 MeV/nucleon Xe-124 beam impinging on a 4 g/cm(2) Be-9 target. While the deduced E2 strength for the 2(+) -> 0(+) transition in the yrast cascade follows the expected behavior for conserved seniority symmetry, the intermediate 4(+) -> 2(+) transition exhibits a drastic enhancement of transition strength in comparison with pure-seniority model predictions as well as standard shell model predictions in the f pg proton hole space with respect to doubly magic Sn-100. The anomalous behavior is ascribed to a subtle interference between the wave function of the lowest seniority v = 2, I-pi = 4(+) state and that of a close-lying v = 4 state that exhibits partial dynamic symmetry. In addition, the observed strongly prohibitive 6(+) -> 4(+) transition can be attributed to the same mechanism but with a destructive interference. It is noted that such effects may provide stringent tests of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations.
|
Montanari, D. et al, & Gadea, A. (2011). Elastic, inelastic, and one-nucleon transfer processes in (48)Ca+(64)Ni. Phys. Rev. C, 84(5), 9pp.
Abstract: Elastic, inelastic, and one-nucleon transfer channels in the (48)Ca+(64)Ni reaction have been measured at approximate to 6 MeV/nucleon with the PRISMA-CLARA setup, at Legnaro National Laboratory, consisting of the coupling of a large solid angle magnetic spectrometer with a germanium array. By trajectory reconstruction the reaction products have been fully identified in mass, nuclear charge, and kinetic energy, while coincident gamma spectra of binary partners have been constructed after Doppler correction. Absolute differential cross sections have been extracted for the inelastic excitation and one-nucleon transfer, also for specific excited states. The data are in good agreement with semiclassical calculations and distorted wave Born approximation predictions. The work outlines an experimental method which can become valuable to extract structural information from heavy-ion reaction studies.
|
Broda, R. et al, & Gadea, A. (2010). Proton-hole states in the N=30 neutron-rich isotope K-49. Phys. Rev. C, 82(3), 034319–7pp.
Abstract: Excited states in the N = 30 neutron-rich isotope K-49 have been studied using multinucleon transfer reactions with thin targets and the PRISMA-CLARA spectrometer combined with thick-target gamma-coincidence data from Gammasphere. The d(3/2) proton-hole state is located 92 keV above the s(1/2) ground state, and the proton-particle f(7/2) state is suggested at 2104 keV. Three other levels are established as involving the coupling to 2(+) of two neutrons above the N = 28 shell. The measured or estimated lifetimes served to reinforce the interpretation of the observed level structure, which is found to be in satisfactory agreement with shell-model calculations.
|
AGATA Collaboration(Liu, X. et al), Gadea, A., Jurado, M., Domingo-Pardo, C., Huyuk, T., & Perez-Vidal, R. M. (2022). Evidence for spherical-oblate shape coexistence in Tc-87. Phys. Rev. C, 106(3), 034304–6pp.
Abstract: Excited states in the neutron-deficient nucleus Tc-87 have been studied via the fusion-evaporation reaction 54Fe(36Ar, 2n1p) Tc-87 at 115 MeV beam energy. The AGATA gamma-ray spectrometer coupled to the DIAMANT, NEDA, and Neutron Wall detector arrays for light-particle detection was used to measure the prompt coincidence of gamma rays and light particles. Six transitions from the deexcitation of excited states belonging to a new band in Tc-87 were identified by comparing gamma-ray intensities in the spectra gated under different reaction channel selection conditions. The constructed level structure was compared with the shell model and total Routhian surface calculations. The results indicate that the new band structure in 87Tc is built on a spherical configuration, which is different from that assigned to the previously identified oblate yrast rotational band.
|