toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Romeri, V.; Giunti, C.; Stuttard, T.; Ternes, C.A. url  doi
openurl 
  Title Neutrino oscillation bounds on quantum decoherence Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 097 - 24pp  
  Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Mixing  
  Abstract (down) We consider quantum-decoherence effects in neutrino oscillation data. Working in the open quantum system framework we adopt a phenomenological approach that allows to parameterize the energy dependence of the decoherence effects. We consider several phenomenological models. We analyze data from the reactor experiments RENO, Daya Bay and KamLAND and from the accelerator experiments NOvA, MINOS/MINOS+ and T2K. We obtain updated constraints on the decoherence parameters quantifying the strength of damping effects, which can be as low as Gamma ij less than or similar to 8 x 10-27 GeV at 90% confidence level in some cases. We also present sensitivities for the future facilities DUNE and JUNO.  
  Address [De Romeri, Valentina] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001118948700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5849  
Permanent link to this record
 

 
Author Figueroa, D.G.; Raatikainen, S.; Rasanen, S.; Tomberg, E. url  doi
openurl 
  Title Non-Gaussian Tail of the Curvature Perturbation in Stochastic Ultraslow-Roll Inflation: Implications for Primordial Black Hole Production Type Journal Article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 127 Issue 10 Pages 101302 - 7pp  
  Keywords  
  Abstract (down) We consider quantum diffusion in ultraslow-roll (USR) inflation. Using the Delta N formalism, we present the first stochastic calculation of the probability distribution P(R) of the curvature perturbation during USR. We capture the nonlinearity of the system, solving the coupled evolution of the coarse-grained background with random kicks from the short wavelength modes, simultaneously with the mode evolution around the stochastic background. This leads to a non-Markovian process from which we determine the highly non-Gaussian tail of P(R). Studying the production of primordial black holes in a viable model, we find that stochastic effects during USR increase their abundance by a factor of similar to 10(5) compared with the Gaussian approximation.  
  Address [Figueroa, Daniel G.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000692791400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4952  
Permanent link to this record
 

 
Author Camarda, S.; Cieri, L.; Ferrera, G. url  doi
openurl 
  Title Fiducial perturbative power corrections within the q(T) subtraction formalism Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 6 Pages 575 - 8pp  
  Keywords  
  Abstract (down) We consider higher-order QCD corrections to the production of high-mass systems in hadron collisions within the transverse-momentum (q(T)) subtraction formalism. We present amethod to consistently remove the linear power corrections in q(T) which appears when fiducial kinematical cuts are applied on the final state system. We consider explicitly the case of fiducial cross sections for Drell-Yan lepton pair production at the Large Hadron Collider up to next-to-nextto-next-to-leading order (N3LO) in QCD. We have implemented our method within the DYTurbo numerical program and we have obtained perturbative predictions which are in agreement at the permille level with those obtained with local subtraction formalisms up to the next-to-next-toleading order (NNLO). At the N3LO we are able to provide predictions for fiducial cross sections with numerical accuracy at the permille level.  
  Address [Camarda, Stefano] CERN, CH-1211 Geneva, Switzerland, Email: leandrosanber@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000819424700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5281  
Permanent link to this record
 

 
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J. url  doi
openurl 
  Title Birth of baby universes from gravitational collapse in a modified-gravity scenario Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 028 - 19pp  
  Keywords modified gravity; Wormholes  
  Abstract (down) We consider equilibrium models of spherical boson stars in Palatini f (R) = R + CR2 gravity and study their collapse when perturbed. The Einstein-Klein-Gordon system is solved using a recently established correspondence in an Einstein frame representation. We find that, in that frame, the endpoint is a nonrotating black hole surrounded by a quasi -stationary cloud of scalar field. However, the dynamics in the f (R) frame is dramatically different. The innermost region of the collapsing object exhibits the formation of a finite -size, exponentially-expanding baby universe connected with the outer (parent) universe via a minimal area surface (a throat or umbilical cord). Our simulations indicate that this surface is at all times hidden inside a horizon, causally disconnecting the baby universe from observers above the horizon. The implications of our findings in other areas of gravitational physics are also discussed.  
  Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: andreu.maso@uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001025474200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5577  
Permanent link to this record
 

 
Author Pich, A.; Platschorre, A.; Reig, M. url  doi
openurl 
  Title Electroweak mass difference of mesons Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 9 Pages 094044 - 6pp  
  Keywords  
  Abstract (down) We consider electroweak gauge boson corrections to the masses of pseudoscalar mesons to next to leading order in alpha s and 1/NC. The pion mass shift induced by the Z boson is shown to be m pi +/- – m pi 0 = -0.00201(12) MeV. While being small compared to the electromagnetic mass shift, the prediction lies about a factor of similar to 4 above the precision of the current experimental measurement and a factor O(10) below the precision of current lattice calculations. This motivates future implementations of these electroweak gauge boson effects on the lattice. Finally, we consider beyond standard model contributions to the pion mass difference.  
  Address [Pich, Antonio] Univ Valencia, Dept Fis Teor, CSIC, IFIC, Parque Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: pich@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131850700011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5907  
Permanent link to this record
 

 
Author Camarda, S.; Cieri, L.; Ferrera, G. url  doi
openurl 
  Title Drell-Yan lepton-pair production: qT resummation at N4LL accuracy Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 845 Issue Pages 138125 - 12pp  
  Keywords  
  Abstract (down) We consider Drell-Yan lepton pairs produced in hadronic collisions. We present high-accuracy QCD predictions for the transverse-momentum (qT) distribution and fiducial cross sections in the small qT region. We resum to all perturbative orders the logarithmically enhanced contributions up to the next-to-next-to-next-to-next-to-leading logarithmic (N4LL) accuracy and we include the hard-virtual coefficient at the next-to-next-to-next-to-leading order (N3LO) (i.e. O(& alpha;3S)) with an approximation of the N4LO coefficients. The massive axial-vector and vector contributions up to three loops have also been consistently included. The resummed partonic cross section is convoluted with approximate N3LO parton distribution functions. We show numerical results at LHC energies of resummed qT distributions for Z/& gamma; *, W & PLUSMN; production and decay, including the W & PLUSMN; and Z/& gamma; * ratio, estimating the corresponding uncertainties from missing higher orders corrections and from incomplete or missing perturbative information coefficients at N4LL and N4LO. Our resummed calculation has been encoded in the public numerical program DYTurbo.  
  Address [Camarda, Stefano] CERN, CH-1211 Geneva, Switzerland, Email: giancarlo.ferrera@mi.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067194500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5687  
Permanent link to this record
 

 
Author Hagedorn, C.; Kriewald, J.; Orloff, J.; Teixeira, A.M. url  doi
openurl 
  Title Flavour and CP symmetries in the inverse seesaw Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 3 Pages 194 - 32pp  
  Keywords  
  Abstract (down) We consider an inverse seesaw mechanism of neutrino mass generation in which the Standard Model is extended by 3 + 3 (heavy) sterile states, and endowed with a flavour symmetry G(f), G(f) = Delta(3n(2)) or G(f) = Delta(6n(2)), and a CP symmetry. These symmetries are broken in a peculiar way, so that in the charged lepton sector a residual symmetry G(l) is preserved, while the neutral fermion sector remains invariant under the residual symmetry G(nu) = Z(2) x CP. We study the concrete setup, where the Majorana mass term for three of the sterile states conserves G(nu), while the remaining mass terms (i.e. couplings of left-handed leptons and heavy sterile states, as well as the Dirac-type couplings among the latter) do not break the flavour or CP symmetry. We perform a comprehensive analysis of lepton mixing for different classes of residual symmetries, giving examples for each of these, and study in detail the impact of the additional sterile states on the predictions for lepton mixing. We further confront our results with those obtained in the model-independent scenario, in which the light neutrino mass matrix leaves the residual symmetry G(nu) intact. We consider the phenomenological impact of the inverse seesaw mechanism endowed with flavour and CP symmetries, in particular concerning effects of non-unitarity of the lepton mixing matrix (which strongly constrain the parameter space of the scenario), prospects for neutrinoless double beta decay and for charged lepton flavour violating processes.  
  Address [Hagedorn, C.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: jonathan.kriewald@clermont.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000764106400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5161  
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P. url  doi
openurl 
  Title Minimal flavor violation in the see-saw portal Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 185 - 28pp  
  Keywords Neutrino Physics; Beyond Standard Model; CP violation  
  Abstract (down) We consider an extension of the Standard Model with two singlet leptons, with masses in the electroweak range, that induce neutrino masses via the see-saw mechanism, plus a generic new physics sector at a higher scale, A. We apply the minimal flavor violation (MFV) principle to the corresponding Effective Field Theory (nu SMEFT) valid at energy scales E << A. We identify the irreducible sources of lepton flavor and lepton number violation at the renormalizable level, and apply the MFV ansatz to derive the scaling of the Wilson coefficients of the nu SMEFT operators up to dimension six. We highlight the most important phenomenological consequences of this hypothesis in the rates for exotic Higgs decays, the decay length of the heavy neutrinos, and their production modes at present and future colliders. We also comment on possible astrophysical implications.  
  Address [Barducci, Daniele] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000546965800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4462  
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.; Mele, B. url  doi
openurl 
  Title The see-saw portal at future Higgs Factories Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 117 - 32pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract (down) We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Lambda. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Lambda similar or equal to 500-1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.  
  Address [Barducci, Daniele] Univ Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000629645800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4766  
Permanent link to this record
 

 
Author Drewes, M.; Georis, Y.; Hagedorn, C.; Klaric, J. url  doi
openurl 
  Title Low-scale leptogenesis with flavour and CP symmetries Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 044 - 113pp  
  Keywords Baryo-and Leptogenesis; Discrete Symmetries; Flavour Symmetries; Sterile or Heavy Neutrinos  
  Abstract (down) We consider a type-I seesaw framework endowed with a flavour symmetry, belonging to the series of non-abelian groups increment (3 n(2)) and increment (6 n(2)), and a CP symmetry. Breaking these symmetries in a non-trivial way results in the right-handed neutrinos being degenerate in mass up to possible (further symmetry-breaking) splittings kappa and lambda, while the neutrino Yukawa coupling matrix encodes the entire flavour structure in the neutrino sector. For a fixed combination of flavour and CP symmetry and residual groups, this matrix contains five real free parameters. Four of them are determined by the light neutrino mass spectrum and by accommodating experimental data on lepton mixing well, while the angle theta(R) is related to right-handed neutrinos. We scrutinise for all four lepton mixing patterns, grouped into Case 1) through Case 3 b.1), the potential to generate the baryon asymmetry of the Universe through low-scale leptogenesis numerically and analytically. The main results are: a) the possible correlation of the baryon asymmetry and the Majorana phases, encoded in the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix, in certain instances; b) the possibility to generate the correct amount of baryon asymmetry for vanishing splittings kappa and lambda among the right-handed neutrinos as well as for large kappa, depending on the case and the specific choice of group theory parameters; c) the chance to produce sufficient baryon asymmetry for large active-sterile mixing angles, enabling direct experimental tests at current and future facilities, if theta(R) is close to a special value, potentially protected by an enhanced residual symmetry. We elucidate these results with representative examples of flavour and CP symmetries, which all lead to a good agreement with the measured values of the lepton mixing angles and, possibly, the current indication of the CP phase delta. We identify the CP-violating combinations relevant for low-scale leptogenesis, and show that the parametric dependence of the baryon asymmetry found in the numerical study can be understood well with their help.  
  Address [Drewes, M.; Georis, Y.; Klaric, J.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain La Neuve, Belgium, Email: marco.drewes@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898830800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5435  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva