toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mandic, I.; Cindro, V.; Debevc, J.; Gorisek, A.; Hiti, B.; Kramberger, G.; Skomina, P.; Zavrtanik, M.; Mikuz, M.; Vilella, E.; Zhang, C.; Powell, S.; Franks, M.; Marco-Hernandez, R.; Steininger, H. url  doi
openurl 
  Title Study of neutron irradiation effects in Depleted CMOS detector structures Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 3 Pages P03030 - 13pp  
  Keywords Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Solid state detectors  
  Abstract (down) In this paper the results of Edge-TCT and I-V measurements with passive test structures made in LFoundry 150 nm HV-CMOS process on p-type substrates with different initial resistivities ranging from 0.5 to 3 k Omega cm are presented. Samples were irradiated with reactor neutrons up to a fluence of 2.10(15) n(eq)/cm(2). The depletion depth was measured with Edge-TCT. The effective space charge concentration N-eff was estimated from the dependence of the depletion depth on bias voltage and studied as a function of neutron fluence. The dependence of N-eff on fluence changes with initial acceptor concentration in agreement with other measurements with p-type silicon. A long term accelerated annealing study of N-eff and detector current up to 1280 minutes at 60 degrees C was made. It was found that N-eff and current in reverse biased detector behave as expected for irradiated silicon.  
  Address [Mandic, I; Cindro, V; Debevc, J.; Gorisek, A.; Hiti, B.; Kramberger, G.; Skomina, P.; Zavrtanik, M.; Mikuz, M.] Jozef Stefan Inst, Jamova 39, Ljubljana, Slovenia, Email: igor.mandic@ijs.si  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000784713600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5208  
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila Serrano, U. url  doi
openurl 
  Title Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages T03004 - 22pp  
  Keywords Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Solid state detectors; Performance of High Energy Physics Detectors  
  Abstract (down) In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.  
  Address [Kuehn, S.] European Org Nucl Res, CERN, Geneva, Switzerland, Email: susanne.kuehn@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428146400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3530  
Permanent link to this record
 

 
Author Bouhova-Thacker, E.; Kostyukhin, V.; Koffas, T.; Liebig, W.; Limper, M.; Piacquadio, G.N.; Prokofiev, K.; Weiser, C.; Wildauer, A. doi  openurl
  Title Expected Performance of Vertex Reconstruction in the ATLAS Experiment at the LHC Type Journal Article
  Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 57 Issue 2 Pages 760-767  
  Keywords Data analysis; data reconstruction; high energy physics; pattern recognition; reconstruction algorithms; tracking; vertex detectors  
  Abstract (down) In the harsh environment of the Large Hadron Collider at CERN (design luminosity of 10(34) cm(-2) s(-1)) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper is the expected performance of the vertex reconstruction used in the ATLAS experiment. The algorithms for the reconstruction of primary and secondary vertices as well as for finding photon conversions and vertex reconstruction in jets are described. The implementation of vertex algorithms which follows a very modular design based on object-oriented C++ is presented. A user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.  
  Address [Bouhova-Thacker, Eva] Univ Lancaster, Lancaster LA1 4YB, England, Email: bouhova@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276679200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 260  
Permanent link to this record
 

 
Author Ruhr, F. et al; Escobar, C.; Miñano, M. doi  openurl
  Title Testbeam studies of barrel and end-cap modules for the ATLAS ITk strip detector before and after irradiation Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 979 Issue Pages 164430 - 6pp  
  Keywords Particle physics; Tracking detectors; ATLAS; HL-LHC; Test beam  
  Abstract (down) In order to cope with the occupancy and radiation doses expected at the High-Luminosity LHC, the ATLAS experiment will replace its Inner Detector with an all-silicon Inner Tracker (ITk), consisting of pixel and strip subsystems. In the last two years, several prototype ITk strip modules have been tested using beams of high energy electrons produced at the DESY-II testbeam facility. Tracking was provided by EUDET telescopes. The modules tested are built from two sensor types: the rectangular ATLAS17LS, which will be used in the outer layers of the central barrel region of the detector, and the annular ATLAS12EC, which will be used in the innermost ring (R0) of the forward region. Additionally, a structure with two RO modules positioned back-to-back has been measured, demonstrating space point reconstruction using the stereo angle of the strips. Finally, one barrel and one RO module have been measured after irradiation to 40% beyond the expected end-of-lifetime fluence. The data obtained allow for thorough tests of the module performance, including charge collection, noise occupancy, detection efficiency, and tracking performance. The results give confidence that the ITk strip detector will meet the requirements of the ATLAS experiment.  
  Address [Ruehr, F.; Argos, C. Garcia; Hauser, M.; Moos, F.; Rodriguez, A. Rodriguez; Sperlich, D.; Wiik-Fuchs, L.] Albert Ludwigs Univ Freiburg, Phys Inst, Freiburg, Germany, Email: frederik.ruehr@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000573295200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4548  
Permanent link to this record
 

 
Author Lalovic, N.; Louchart, C.; Michelagnoli, C.; Perez-Vidal, R.M.; Ralet, D.; Gerl, J.; Rudolph, D.; Arici, T.; Bazzacco, D.; Clement, E.; Gadea, A.; Kojouharov, I.; Korichi, A.; Labiche, M.; Ljungvall, J.; Lopez-Martens, A.; Nyberg, J.; Pietralla, N.; Pietri, S.; Stezowski, O. doi  openurl
  Title Performance of the AGATA gamma-ray spectrometer in the PreSPEC set-up at GSI Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 806 Issue Pages 258-266  
  Keywords Gamma-ray spectroscopy; Gamma-ray tracking; Nuclear structure; Pulse shape analysis; HPGe detectors  
  Abstract (down) In contemporary nuclear physics, the European Advanced GAmma Tracking Array (AGATA) represents a crucial detection system for cutting-edge nuclear structure studies. AGATA consists of highly segmented high-purity germanium crystals and uses the pulse-shape analysis technique to determine both the position and the energy of the y-ray interaction points in the crystals. It is the tracking algorithms that deploy this information and enable insight into the sequence of interactions, providing information on the full or partial absorption of the 7 ray. A series of dedicated performance measurements for an AGATA set-up comprising 21 crystals is described. This set-up was used within the recent PreSPEC-AGATA experimental campaign at the GSI Helmholtzzentrum fur Schwerionenforschung. Using the radioactive sources Co-56, Co-60 and Eu-152, absolute and normalized efficiencies and the peak-to-total of the array were measured. These quantities are discussed using different data analysis procedures. The quality of the pulse-shape analysis and the tracking algorithm are evaluated. The agreement between the experimental data and the Geant4 simulations is also investigated.  
  Address [Lalovic, N.; Rudolph, D.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden, Email: Natasa.Lalovic@nuclear.lu.se  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000364856100035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2463  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva