toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N. url  doi
openurl 
  Title Pion-to-vacuum vector and axial vector amplitudes and weak decays of pions in a magnetic field Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 5 Pages 054031 - 18pp  
  Keywords  
  Abstract (down) We propose a model-independent parametrization for the one-pion-to-vacuum matrix elements of the vector and axial vector hadronic currents in the presence of an external uniform magnetic field. It is shown that, in general, these hadronic matrix elements can be written in terms of several gauge covariant Lorentz structures and form factors. Within this framework we obtain a general expression for the weak decay pi(- )-> l(nu)over bar(l) and discuss the corresponding limits of strong and weak external magnetic fields.  
  Address [Coppola, M.; Scoccola, N. N.] Consejo Nacl Invest Cient & Tecn, Rivadavia 1917, RA-1033 Buenos Aires, DF, Argentina  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462915500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3962  
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Queiroz, F.S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title The dark side of flipped trinification Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 143 - 31pp  
  Keywords Cosmology of Theories beyond the SM; Discrete Symmetries; Gauge Symmetry  
  Abstract (down) We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.  
  Address [Dong, P. V.; Huong, D. T.] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam, Email: pvdong@iop.vast.ac.vn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432044000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3576  
Permanent link to this record
 

 
Author Alcaide, J.; Das, D.; Santamaria, A. url  doi
openurl 
  Title A model of neutrino mass and dark matter with large neutrinoless double beta decay Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 049 - 21pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract (down) We propose a model where neutrino masses are generated at three loop order but neutrinoless double beta decay occurs at one loop. Thus we can have large neutrinoless double beta decay observable in the future experiments even when the neutrino masses are very small. The model receives strong constraints from the neutrino data and lepton flavor violating decays, which substantially reduces the number of free parameters. Our model also opens up the possibility of having several new scalars below the TeV regime, which can be explored at the collider experiments. Additionally, our model also has an unbroken Z(2) symmetry which allows us to identify a viable Dark Matter candidate.  
  Address [Alcaide, Julien] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: julien.alcaide@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399275900008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3067  
Permanent link to this record
 

 
Author Aitken, K.; McKeen, D.; Neder, T.; Nelson, A.E. url  doi
openurl 
  Title Baryogenesis from oscillations of charmed or beautiful baryons Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 7 Pages 075009 - 15pp  
  Keywords  
  Abstract (down) We propose a model for CP-violating oscillations of neutral, heavy-flavor baryons into antibaryons at rates which are within a few orders of magnitude of their lifetimes. The flavor structure of the baryon violation suppresses neutron oscillations and baryon-number-violating nuclear decays to experimentally allowed rates. We also propose a scenario for producing such baryons in the early Universe via the out-of-equilibrium decays of a neutral particle, after hadronization but before nucleosynthesis. We find parameters where CP-violating baryon oscillations at a temperature of a few MeV could result in the observed asymmetry between baryons and antibaryons. Furthermore, part of the relevant parameter space for baryogenesis is potentially testable at Belle II via decays of heavy-flavor baryons into an exotic neutral fermion. The model introduces four new particles: three light Majorana fermions and a colored scalar. The lightest of these fermions is typically long lived on collider time scales and may be produced in decays of bottom and possibly charmed hadrons.  
  Address [Aitken, Kyle; Nelson, Ann E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA, Email: kaitken17@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000412516100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3321  
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Vishnudath, K.N.; Valle, J.W.F. url  doi
openurl 
  Title Linear seesaw mechanism from dark sector Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 046 - 18pp  
  Keywords Lepton Flavour Violation (charged); Multi-Higgs Models; Neutrino Mixing; Sterile or Heavy Neutrinos  
  Abstract (down) We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.  
  Address [Hernandez, A. E. Carcamo; Vishnudath, K. N.] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001184730300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5982  
Permanent link to this record
 

 
Author Bhattacharya, S.; Sil, A.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Symmetry origin of baryon asymmetry, dark matter, and neutrino mass Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 7 Pages 075005 - 10pp  
  Keywords  
  Abstract (down) We propose a minimal model based on lepton number symmetry (and violation), to address a common origin of baryon asymmetry, dark matter and neutrino mass generation. The model consists of a vectorlike fermion to constitute the dark sector, three right-handed neutrinos (RHNs) to dictate leptogenesis and neutrino mass, while an additional complex scalar is assumed to be present in the early Universe the decay of which produces both dark matter and RHNs via lepton number violating and lepton number conserving interactions respectively. Interestingly, the presence of the same scalar helps in making the electroweak vacuum stable until the Planck scale. The unnatural largeness and smallness of the parameters required to describe correct experimental limits are attributed to lepton number violation. The allowed parameter space of the model is illustrated via a numerical scan.  
  Address [Bhattacharya, Subhaditya; Sil, Arunansu] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000874548200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5402  
Permanent link to this record
 

 
Author Jeong, K.S.; Park, W.I. url  doi
openurl 
  Title Cosmology with a supersymmetric local B – L model Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 016 - 34pp  
  Keywords cosmological phase transitions; gravitational waves / sources; physics of the early universe; supersymmetry and cosmology  
  Abstract (down) We propose a minimal gauged U(1)(B-L) extension of the minimal supersymmetric Standard Model (MSSM) which resolves the cosmological moduli problem via thermal inflation, and realizes late-time Affleck-Dine leptogensis so as to generate the right amount of baryon asymmetry at the end of thermal inflation. The present relic density of dark matter can be explained by sneutrinos, MSSM neutralinos, axinos, or axions. Cosmic strings from U(1)(B-L) breaking are very thick, and so the expected stochastic gravitational wave background from cosmic string loops has a spectrum different from the one in the conventional Abelian-Higgs model, as would be distinguishable at least at LISA and DECIGO. The characteristic spectrum is due to a flat potential, and may be regarded as a hint of supersymmetry. Combined with the resolution of moduli problem, the expected signal of gravitational waves constrains the U(1)(B-L) breaking scale to be O(10(12-13)) GeV. Interestingly, our model provides a natural possibility for explaining the observed ultra-high-energy cosmic rays thanks to the fact that the core width of strings in our scenario is very large, allowing a large enhancement of particle emissions from the cusps of string loops. Condensation of LHu flat-direction inside of string cores arises inevitably and can also be the main source of the ultra-high-energy cosmic rays accompanied by ultra-high-energy lightest supersymmetric particles.  
  Address [Jeong, Kwang Sik] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea, Email: ksjeong@pusan.ac.kr;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001149204000015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5992  
Permanent link to this record
 

 
Author Botella, F.J.; Branco, G.C.; Rebelo, M.N.; Silva-Marcos, J.I.; Bastos, J.F. url  doi
openurl 
  Title Decays of the heavy top and new insights on epsilon(K) in a one-VLQ minimal solution to the CKM unitarity problem Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 4 Pages 360 - 16pp  
  Keywords  
  Abstract (down) We propose a minimal extension of the Standard Model where an up-type vector-like quark, denoted T, is introduced and provides a simple solution to the CKM unitarity problem. We adopt the Botella-Chau parametrization in order to extract the 4 x 3 quark mixing matrix which contains the three angles of the 3 x 3 CKM matrix plus three new angles denoted theta(14), theta(24), theta(34). It is assumed that the mixing of T with standard quarks is dominated by theta(14). Imposing a recently derived, and much more restrictive, upper-bound on the New Physics contributions to epsilon(K) , we find, in the limit of exact theta(14) dominance where the other extra angles vanish, that epsilon(NP)(K) is too large. However, if one relaxes the exact theta(14) dominance limit, there exists a parameter region, where one may obtain epsilon(NP)(K) in agreement with experiment while maintaining the novel pattern of T decays with the heavy quark decaying predominantly to the light quarks d and u. We also find a reduction in the decay rate of K-L -> pi(0)nu(nu) over bar.  
  Address [Botella, Francisco J.] Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Spain, Email: Francisco.J.Botella@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000787321000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5206  
Permanent link to this record
 

 
Author Bayar, M.; Oset, E. url  doi
openurl 
  Title Method to observe the J(P)=2(+) partner of the X-0(2866) in the B+ -> D+ D- K+ reaction Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 833 Issue Pages 137364 - 6pp  
  Keywords  
  Abstract (down) We propose a method based on the moments of the D- K+ mass distribution in the B+ -> D+ D- K+ decay to disentangle the contribution of the 2(+) state, partner of X-0(2900) in the (D) over bar *K* picture for this resonance. Some of these moments show the interference patterns of the X-1(2900) and X-0(2900) with the 2(+) state, which provide a clearer signal of the 2(+) resonance than the 2(+) signal alone. The construction of these magnitudes from present data is easy to implement, and based on these data we show that clear signals for that resonance should be seen even with the present statistics.  
  Address [Bayar, M.] Kocaeli Univ, Dept Phys, TR-41380 Izmit, Turkey, Email: melahat.bayar@kocaeli.edu.tr;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000865640700037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5389  
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Neutrino predictions from a left-right symmetric flavored extension of the standard model Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 065 - 24pp  
  Keywords Beyond Standard Model; Discrete Symmetries; Neutrino Physics; Quark Masses and SM Parameters  
  Abstract (down) We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.  
  Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459168900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3917  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva