toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J.; Zou, B.S. url  doi
openurl 
  Title Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV Type Journal Article
  Year 2023 Publication Science Bulletin Abbreviated Journal Sci. Bull.  
  Volume 68 Issue 7 Pages 688-697  
  Keywords Charmonium(-like) states; Hadronic molecules; Heavy quark spin symmetry; Exotic hadrons; Hadron-hadron interactions  
  Abstract (down) We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun; Zou, Bing-Song] Inst Theoret Phys, Chinese Acad Sci, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-9273 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000985290600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5520  
Permanent link to this record
 

 
Author Mandal, S.; Rojas, N.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Dark matter as the origin of neutrino mass in the inverse seesaw mechanism Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 821 Issue Pages 136609 - 15pp  
  Keywords  
  Abstract (down) We propose that neutrino masses are “seeded” by a dark sector within the inverse seesaw mechanism. This way we have a new, “hidden”, variant of the scotogenic scenario for radiative neutrino masses. We discuss both explicit and dynamical lepton number violation. In addition to invisible Higgs decays with majoron emission, we discuss in detail the pheneomenolgy of dark matter, as well as the novel features associated to charged lepton flavour violation, and neutrino physics.  
  Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: smandal@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000734909800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5065  
Permanent link to this record
 

 
Author Barreiros, D.M.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Minimal scoto-seesaw mechanism with spontaneous CP violation Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 249 - 21pp  
  Keywords Neutrino Physics; CP violation  
  Abstract (down) We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.  
  Address [Barreiros, D. M.; Joaquim, F. R.] Univ Lisbon, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: debora.barreiros@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646917200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4814  
Permanent link to this record
 

 
Author El-Neaj, Y.A. et al; Bernabeu, J. url  doi
openurl 
  Title AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space Type Journal Article
  Year 2020 Publication EPJ Quantum Technology Abbreviated Journal EPJ Quantum Technol.  
  Volume 7 Issue 1 Pages 6 - 27pp  
  Keywords  
  Abstract (down) We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126  
  Address [El-Neaj, Yousef Abou] Harvard Univ, Phys Dept, Cambridge, MA 02138 USA, Email: o.buchmueller@imperial.ac.uk  
  Corporate Author Thesis  
  Publisher Springeropen Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2662-4400 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519468200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4325  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O. url  doi
openurl 
  Title Cosmology-marginalized approaches in Bayesian model comparison: The neutrino mass as a case study Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 2 Pages 021301 - 6pp  
  Keywords  
  Abstract (down) We propose here a novel method which singles out the a priori unavoidable dependence on the underlying cosmological model when extracting parameter constraints, providing robust limits which only depend on the considered dataset. Interestingly, when dealing with several possible cosmologies and interpreting the Bayesian preference in terms of the Gaussian statistical evidence, the preferred model is much less favored than when only two cases are compared. As a working example, we apply our approach to the cosmological neutrino mass bounds, which play a fundamental role not only in establishing the contribution of relic neutrinos to the dark matter of the Universe but also in the planning of future experimental searches of the neutrino character and of the neutrino mass ordering.  
  Address [Gariazzo, S.; Mena, O.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456800000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3893  
Permanent link to this record
 

 
Author Dias, A.G.; Leite, J.; Sanchez-Vega, B.L.; Vieira, W.C. url  doi
openurl 
  Title Dynamical symmetry breaking and fermion mass hierarchy in the scale-invariant 3-3-1 model Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 1 Pages 015021 - 18pp  
  Keywords  
  Abstract (down) We propose an extension of the Standard Model (SM) based on the SU(3)(C) circle times SU(3)(L) circle times U(1)(X) (3-3-1) gauge symmetry and scale invariance. Maintaining the main features of the so-called 3-3-1 models, such as the cancellation of gauge anomalies related to the number of chiral fermion generations, this model exhibits a very compact scalar sector. Only two scalar triplets and one singlet are necessary and sufficient to break the symmetries dynamically via the Coleman-Weinberg mechanism. With the introduction of an Abelian discrete symmetry and assuming a natural hierarchy among the vacuum expectation values of the neutral scalar fields, we show that all particles in the model can get phenomenologically consistent masses. In particular, most of the standard fermion masses are generated via a seesaw mechanism involving some extra heavy fermions introduced for consistency. This mechanism provides a partial solution for the fermion mass hierarchy problem in the SM. Furthermore, the simplicity of the scalar sector allows us to analytically find the conditions for the potential stability up to one-loop level and show how they can be easily satisfied. Some of the new particles, such as the scalars H, H-+/- and all the non-SMvector bosons, are predicted to get masses around the TeV scale and, therefore, could be produced at the high-luminosity LHC. Finally, we show that the model features a residual symmetry, which leads to the stability of a heavy neutral particle; the latter is expected to show up in experiments as missing energy.  
  Address [Dias, Alex G.; Leite, Julio; Vieira, William C.] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: alex.dias@ufabc.edu.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551342000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4469  
Permanent link to this record
 

 
Author Abbas, G. url  doi
openurl 
  Title Low scale left-right-right-left symmetry Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 1 Pages 015029 - 8pp  
  Keywords  
  Abstract (down) We propose an effective left-right-right-left model with a parity breaking scale around a few TeV. One of the main achievements of the model is that the mirror fermions as well as the mirror gauge sector simultaneously could be at TeV scale. It is shown that the most dangerous quadratic divergence of the SM Higgs boson involving the top quark in the loop is naturally suppressed, and begins at three loop. The model postpones the fine-tuning of the mass of the SM Higgs boson up to a sufficiently high scale. The model explains the smallness of the neutrino masses whether they are Dirac or Majorana. Furthermore, the strong CP phase is zero in this model.  
  Address [Abbas, Gauhar] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: Gauhar.Abbas@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000398739700013 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3051  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Generalized bottom-tau unification, neutrino oscillations and dark matter: Predictions from a lepton quarticity flavor approach Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 773 Issue Pages 26-33  
  Keywords  
  Abstract (down) We propose an A(4) extension of the Standard Model with a Lepton Quarticity symmetry correlating dark matter stability with the Dirac nature of neutrinos. The flavor symmetry predicts (i) a generalized bottom-tau mass relation involving all families, (ii) small neutrino masses are induced a la seesaw, (iii) CP must be significantly violated in neutrino oscillations, (iv) the atmospheric angle theta(23) lies in the second octant, and (v) only the normal neutrino mass ordering is realized.  
  Address [Chulia, Salvador Centelles; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413294200004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3340  
Permanent link to this record
 

 
Author Bagli, E.; Bandiera, L.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez-Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Vidal, J.R. url  doi
openurl 
  Title Electromagnetic dipole moments of charged baryons with bent crystals at the LHC Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 12 Pages 828 - 19pp  
  Keywords  
  Abstract (down) We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.  
  Address [Bagli, E.; Bandiera, L.; Guidi, V.; Mazzolari, A.] INFN Sez Ferrara, Ferrara, Italy, Email: nicola.neri@mi.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000417103300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3394  
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Camargo, D.A.; Queiroz, F.S.; Valle, J.W.F. url  doi
openurl 
  Title Asymmetric dark matter, inflation, and leptogenesis from B-L symmetry breaking Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 5 Pages 055040 - 17pp  
  Keywords  
  Abstract (down) We propose a unified setup for dark matter, inflation, and baryon asymmetry generation through the neutrino mass seesaw mechanism. Our scenario emerges naturally from an extended gauge group containing B-L as a noncommutative symmetry, broken by a singlet scalar that also drives inflation. Its decays reheat the universe, producing the lightest right-handed neutrino. Automatic matter parity conservation leads to the stability of an asymmetric dark matter candidate, directly linked to the matter-antimatter asymmetry in the Universe.  
  Address [Phung Van Dong] Phenikaa Univ, Phenikaa Inst Adv Study, Hanoi 100000, Vietnam, Email: dong.phungvan@phenikaa-uni.edu.vn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462913900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3969  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva