toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Domingo-Pardo, C. url  doi
openurl 
  Title i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 825 Issue Pages 78-86  
  Keywords Radiative neutron capture; Neutron time-of-flight; Cross-section; Pulse-height weighting technique; Compton imaging  
  Abstract (up) A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.  
  Address [Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376713700010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2686  
Permanent link to this record
 

 
Author Domingo-Pardo, C.; Goel, N.; Engert, T.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Didierjean, F.; Duchene, G.; Sigward, M.H. doi  openurl
  Title A novel gamma-ray imaging method for the pulse-shape characterization of position sensitive semiconductor radiation detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 643 Issue 1 Pages 79-88  
  Keywords gamma-detector; Pulse shape analysis; Tracking; Semiconductor  
  Abstract (up) A new technique for the pulse-shape characterization of gamma-ray position sensitive germanium detectors is presented. This method combines the pulse shape comparison scan (PSCS) principle with a gamma-ray imaging technique. The latter is provided by a supplementary, high performance, position sensitive gamma-ray scintillator detector. We describe the basic aspects of the method and we show measurements made for the study of pulse-shapes in a non-segmented planar HPGe detector. A preliminary application of the PSCS is carried out, although a more detailed investigation is being performed with highly segmented position sensitive detectors.  
  Address [Domingo-Pardo, C; Goel, N; Engert, T; Gerl, J; Kojouharov, I; Schaffner, H] GSI Helmholtzzentnim Schwenonenforsch mbH, D-64291 Darmstadt, Germany, Email: cesar.domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292442700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 694  
Permanent link to this record
 

 
Author Yokoyama, R.; Singh, M.; Grzywacz, R.; Keeler, A.; King, T.T.; Agramunt, J.; Brewer, N.T.; Go, S.; Heideman, J.; Liu, J.; Nishimura, S.; Parkhurst, P.; Phong, V.H.; Rajabali, M.M.; Rasco, B.C.; Rykaczewski, K.P.; Stracener, D.W.; Tain, J.L.; Tolosa-Delgado, A.; Vaigneur, K.; Wolinska-Cichocka, M. url  doi
openurl 
  Title Segmented YSO scintillation detectors as a new beta-implant detection tool for decay spectroscopy in fragmentation facilities Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 937 Issue Pages 93-97  
  Keywords Beta-decay; Implant-beta detector; Radioactive isotopes; Fragmentation  
  Abstract (up) A newly developed segmented YSO scintillator detector was implemented for the first time at the RI-beam Factory at RIKEN Nishina Center as an implantation-decay counter. The results from the experiment demonstrate that the detector is a viable alternative to conventional silicon-strip detectors with its good timing resolution and high detection efficiency for beta particles. A Position-Sensitive Photo-Multiplier Tube (PSPMT) is coupled with a 48 x 48 segmented YSO crystal. To demonstrate its capabilities, a known short-lived isomer in Ni-76 and the beta decay of Co-74 were measured by implanting those ions into the YSO detector. The half-lives and gamma-rays observed in this work are consistent with the known values. The beta-ray detection efficiency is more than 80 % for the decay of Co-74.  
  Address [Yokoyama, R.; Singh, M.; Grzywacz, R.; Keeler, A.; King, T. T.; Brewer, N. T.; Heideman, J.; Rasco, B. C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: ryokoyam@utk.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000471139300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4054  
Permanent link to this record
 

 
Author Domingo-Pardo, C. doi  openurl
  Title A new technique for 3D gamma-ray imaging: Conceptual study of a 3D camera Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 675 Issue Pages 123-132  
  Keywords Gamma-ray detector; Three dimensional gamma-ray imaging; Compton camera; Gamma camera  
  Abstract (up) A novel technique for 3D gamma-ray imaging is presented. This method combines the positron annihilation Compton scattering imaging technique with a supplementary position sensitive detector, which registers gamma-rays scattered in the object at angles of about 90 degrees. The 3D coordinates of the scattering location can be determined rather accurately by applying the Compton principle. This method requires access to the object from two orthogonal sides and allows one to achieve a position resolution of few mm in all three space coordinates. A feasibility study for a 3D camera is presented based on Monte Carlo calculations.  
  Address Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302973600019 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 989  
Permanent link to this record
 

 
Author An, L.; Auffray, E.; Betti, F.; Dall'Omo, F.; Gascon, D.; Golutvin, A.; Guz, Y.; Kholodenko, S.; Martinazzoli, L.; Mazorra de Cos, J.; Picatoste, E.; Pizzichemi, M.; Roloff, P.; Salomoni, M.; Sanchez, D.; Schopper, A.; Semennikov, A.; Shatalov, P.; Shmanin, E.; Strekalina, D.; Zhang, Y. url  doi
openurl 
  Title Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1045 Issue Pages 167629 - 7pp  
  Keywords Calorimetry; High energy physics (HEP); Particle detectors; Spaghetti calorimeter (SPACAL); Fibres; Scintillating crystals  
  Abstract (up) A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) and Y3Al5O12 (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution root was studied as a function of the incidence angle of the beam and found to be of the order of 10%/ E a 1%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 +/- 0.2) ps at 5 GeV.  
  Address [An, L.; Auffray, E.; Betti, F.; Dall'Omo, F.; Martinazzoli, L.; Pizzichemi, M.; Roloff, P.; Salomoni, M.; Schopper, A.] European Org Nucl Res CERN, Geneva, Switzerland, Email: loris.martinazzoli@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000882335600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5413  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva