toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hernandez-Prieto, A.; Quintana, B.; Martin, S.; Domingo-Pardo, C. doi  openurl
  Title Study of accuracy in the position determination with SALSA, a gamma-scanning system for the characterization of segmented HPGe detectors Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 823 Issue Pages 98-106  
  Keywords gamma-Camera; Virtual collimation; SAlamanca Lyso-based Scanning Array (SALSA); Segmented HPGe detectors  
  Abstract (down) Accurate characterization of the electric response of segmented high-purity germanium (HPGe) detectors as a function of the interaction position is one of the current goals of the Nuclear Physics community seeking to perform gamma-ray tracking or even imaging with these detectors. For this purpose, scanning devices must be developed to achieve the signal-position association with the highest precision. With a view to studying the accuracy achieved with SALSA, the SAlamanca Lyso-based Scanning Array, here we report a detailed study on the uncertainty sources and their effect in the position determination inside the HPGe detector to be scanned. The optimization performed on the design of SALSA, aimed at minimizing the effect of the uncertainty sources, afforded an intrinsic uncertainty of 2 mm for large coaxial detectors and 1 mm for planar ones.  
  Address [Hernandez-Prieto, A.; Quintana, B.; Martin, S.] Univ Salamanca, Dept Fis Fundamental, Lab Radiac Ionizantes, C Espejo S-N, E-37008 Salamanca, Spain, Email: alvaro.prieto@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374661600014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2664  
Permanent link to this record
 

 
Author Domingo-Pardo, C. doi  openurl
  Title A new technique for 3D gamma-ray imaging: Conceptual study of a 3D camera Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 675 Issue Pages 123-132  
  Keywords Gamma-ray detector; Three dimensional gamma-ray imaging; Compton camera; Gamma camera  
  Abstract (down) A novel technique for 3D gamma-ray imaging is presented. This method combines the positron annihilation Compton scattering imaging technique with a supplementary position sensitive detector, which registers gamma-rays scattered in the object at angles of about 90 degrees. The 3D coordinates of the scattering location can be determined rather accurately by applying the Compton principle. This method requires access to the object from two orthogonal sides and allows one to achieve a position resolution of few mm in all three space coordinates. A feasibility study for a 3D camera is presented based on Monte Carlo calculations.  
  Address Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302973600019 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 989  
Permanent link to this record
 

 
Author Domingo-Pardo, C.; Goel, N.; Engert, T.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Didierjean, F.; Duchene, G.; Sigward, M.H. doi  openurl
  Title A novel gamma-ray imaging method for the pulse-shape characterization of position sensitive semiconductor radiation detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 643 Issue 1 Pages 79-88  
  Keywords gamma-detector; Pulse shape analysis; Tracking; Semiconductor  
  Abstract (down) A new technique for the pulse-shape characterization of gamma-ray position sensitive germanium detectors is presented. This method combines the pulse shape comparison scan (PSCS) principle with a gamma-ray imaging technique. The latter is provided by a supplementary, high performance, position sensitive gamma-ray scintillator detector. We describe the basic aspects of the method and we show measurements made for the study of pulse-shapes in a non-segmented planar HPGe detector. A preliminary application of the PSCS is carried out, although a more detailed investigation is being performed with highly segmented position sensitive detectors.  
  Address [Domingo-Pardo, C; Goel, N; Engert, T; Gerl, J; Kojouharov, I; Schaffner, H] GSI Helmholtzzentnim Schwenonenforsch mbH, D-64291 Darmstadt, Germany, Email: cesar.domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292442700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 694  
Permanent link to this record
 

 
Author Domingo-Pardo, C. url  doi
openurl 
  Title i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 825 Issue Pages 78-86  
  Keywords Radiative neutron capture; Neutron time-of-flight; Cross-section; Pulse-height weighting technique; Compton imaging  
  Abstract (down) A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.  
  Address [Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376713700010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2686  
Permanent link to this record
 

 
Author n_TOF Collaboration (Sabate-Gilarte et al.); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERNx Type Journal Article
  Year 2017 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 53 Issue 10 Pages 210 - 13pp  
  Keywords  
  Abstract (down) A new high flux experimental area has recently become operational at the nTOF facility at CERN. This new measuring station, nTOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutronconverting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197 Au foils in the beam.  
  Address [Sabate-Gilarte, M.; Vlachoudis, V.; Aberle, O.; Bacak, M.; Brugger, M.; Calviani, M.; Cardella, R.; Cerutti, F.; Chiaveri, E.; Ferrari, A.; Hernandez-Prieto, A.; Kadi, Y.; Losito, R.; Macina, D.; Mingrone, F.; Montesano, S.; Rubbia, C.; Weiss, C.] CERN, European Org Nucl Res, Geneva, Switzerland, Email: massimo.barbagallo@ba.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413766400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3350  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva