toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC Type Journal Article
  Year 2017 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 13 Issue 9 Pages 852-858  
  Keywords  
  Abstract (up) Light-by-light scattering (gamma gamma -> gamma gamma) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480 μb(-1) of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 +/- 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (gamma gamma) -> Pb-(center dot) + Pb-(center dot) gamma gamma, for photon transverse energy E-T > 3 GeV, photon absolute pseudorapidity vertical bar eta vertical bar < 2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 +/- 24 (stat.) +/- 17 (syst.) nb, which is in agreement with the standard model predictions.  
  Address [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000409235100017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3287  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Precise determination of the B-s(0)-B-s(-0) oscillation frequency Type Journal Article
  Year 2022 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 18 Issue Pages 54-58  
  Keywords  
  Abstract (up) Mesons comprising a beauty quark and strange quark can oscillate between particle (B-s(0)) and antiparticle (B-s(-0)) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Delta m(s). Here we present a measurement of Delta m(s) using B-s(0) -> D-s(-)pi(+) decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Delta m(s) = 17.7683 +/- 0.0051 +/- 0.0032 ps(-1), where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Delta m(s) precision by a factor of two. We combine this result with previous LHCb measurements to determine Delta m(s) = 17.7656 +/- 0.0057 ps(-1), which is the legacy measurement of the original LHCb detector.  
  Address [Aaij, R.; Butter, J. S.; Akiba, K. Carvalho; Sole, S. Ferreres; Gabriel, E.; Geertsema, R. E.; Greeven, L. M.; Heijhoff, K.; Hulsbergen, W.; Hynds, D.; Jans, E.; Klaver, S.; Koppenburg, P.; Kostiuk, I; Kuindersma, H. S.; Martinez, M. Lucio; Lukashenko, V; Mauri, A.; Merk, M.; Pellegrino, A.; Sanchez Gras, C.; Schubiger, M.; Snoch, A.; Tuning, N.; Usachov, A.; van Beuzekom, M.; Veronesi, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands, Email: alessandro.bertolin@pd.infn.it  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000739810100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5075  
Permanent link to this record
 

 
Author Khachatryan, M. et al, Coloma, P. doi  openurl
  Title Electron-beam energy reconstruction for neutrino oscillation measurements Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 599 Issue 7886 Pages 565-570  
  Keywords  
  Abstract (up) Neutrinos exist in one of three types or 'flavours'-electron, muon and tau neutrinos-and oscillate from one flavour to another when propagating through space. This phenomena is one of the few that cannot be described using the standard model of particle physics (reviewed in ref. (1)), and so its experimental study can provide new insight into the nature of our Universe (reviewed in ref. (2)). Neutrinos oscillate as a function of their propagation distance (L) divided by their energy (E). Therefore, experiments extract oscillation parameters by measuring their energy distribution at different locations. As accelerator-based oscillation experiments cannot directly measure E, the interpretation of these experiments relies heavily on phenomenological models of neutrino-nucleus interactions to infer E. Here we exploit the similarity of electron-nucleus and neutrino-nucleus interactions, and use electron scattering data with known beam energies to test energy reconstruction methods and interaction models. We find that even in simple interactions where no pions are detected, only a small fraction of events reconstruct to the correct incident energy. More importantly, widely used interaction models reproduce the reconstructed energy distribution only qualitatively and the quality of the reproduction varies strongly with beam energy. This shows both the need and the pathway to improve current models to meet the requirements of next-generation, high-precision experiments such as Hyper-Kamiokande (Japan)(3) and DUNE (USA)(4). Electron scattering measurements are shown to reproduce only qualitatively state-of-the-art lepton-nucleus energy reconstruction models, indicating that improvements to these particle-interaction models are required to ensure the accuracy of future high-precision neutrino oscillation experiments.  
  Address [Khachatryan, M.; Hauenstein, F.; Weinstein, L. B.] Old Domin Univ, Norfolk, VA USA, Email: adishka@mit.edu  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000722366200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5073  
Permanent link to this record
 

 
Author Double Chooz collaboration (de Kerret, H. et al); Novella, P. url  doi
openurl 
  Title Double Chooz theta(13) measurement via total neutron capture detection Type Journal Article
  Year 2020 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 16 Issue Pages 558-564  
  Keywords  
  Abstract (up) Neutrinos were assumed to be massless particles until the discovery of the neutrino oscillation process. This phenomenon indicates that the neutrinos have non-zero masses and the mass eigenstates (nu(1), nu(2), nu(3)) are mixtures of their flavour eigenstates (nu(e), nu(mu), nu(tau)). The oscillations between different flavour eigenstates are described by three mixing angles (theta(12), theta(23), theta(13)), two differences of the squared neutrino masses of the nu(2)/nu(1) and nu(3)/nu(1) pairs and a charge conjugation parity symmetry violating phase delta(CP). The Double Chooz experiment, located near the Chooz Electricite de France reactors, measures the oscillation parameter theta(13) using reactor neutrinos. Here, the Double Chooz collaboration reports the measurement of the mixing angle theta(13) with the new total neutron capture detection technique from the full data set, yielding sin(2)(2 theta(13)) = 0.105 +/- 0.014. This measurement exploits the multidetector configuration, the isoflux baseline and data recorded when the reactors were switched off. In addition to the neutrino mixing angle measurement, Double Chooz provides a precise measurement of the reactor neutrino flux, given by the mean cross-section per fission <sigma(f)& rang; = (5.71 +/- 0.06) x 10(-43) cm(2) per fission, and reports an empirical model of the distortion in the reactor neutrino spectrum. The Double Chooz collaboration reports the neutrino oscillation parameter theta(13) from a measurement of the disappearance of reactor anti-electron neutrinos with the total neutron capture technique.  
  Address [de Kerret, H.; Cabrera, A.; Dawson, J., V; Givaudan, A.; Gomez, H.; Hourlier, A.; Karakac, M.; Kryn, D.; Lasserres, T.; Obolensky, M.; Onillon, A.; Suekane, F.; Wagner, S.] Sorbonne Paris Cite Univ, Observ Paris, CEA IRFU, APC,CNRS IN2P3, Paris, France, Email: christian.buck@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000528019800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4389  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Study of the doubly charmed tetraquark T-cc(+) Type Journal Article
  Year 2022 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 13 Issue 1 Pages 3351 - 19pp  
  Keywords  
  Abstract (up) Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the (DD0)-D-0 pi(+) mass spectrum just below the D*+D-0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T-cc(+), tetraquark with a quark content of cc (u) over bar(d) over bar and spin-parity quantum numbers J(P) =1(+). Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*(+) mesons is consistent with the observed D-0 pi(+) mass distribution. To analyse the mass of the resonance and its coupling to the DID system, a dedicated model is developed under the assumption of an isoscalar axial-vector T-cc(+), state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T-cc(+), state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.  
  Address [Aaij, R.; Butter, J. S.; Akiba, K. Carvalho; Sole, S. Ferreres; Gabriel, E.; Geertsema, R. E.; Greeven, L. M.; Heijhoff, K.; Hulsbergen, W.; Hynds, D.; Jans, E.; Ketel, T.; Klaver, S.; Koppenburg, P.; Kostiuk, I; Kuindersma, H. S.; Martinez, M. Lucio; Lukashenko, V; Mauri, A.; Merk, M.; Pellegrino, A.; Raven, G.; Gras, C. Sanchez; Schubiger, M.; Soares, M. Senghi; Snoch, A.; Tuning, N.; Usachov, A.; van Beuzekom, M.; Veronesi, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands, Email: Ivan.Belyaev@cern.ch  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000812556800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5280  
Permanent link to this record
 

 
Author Cederwall, B. et al; Algora, A.; Gadea, A. url  doi
openurl 
  Title Evidence for a spin-aligned neutron-proton paired phase from the level structure of Pd-92 Type Journal Article
  Year 2011 Publication Nature Abbreviated Journal Nature  
  Volume 469 Issue 7328 Pages 68-71  
  Keywords  
  Abstract (up) Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work(1) that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing(2-6), in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus Pd-92. Gamma rays emitted following the Ni-58(Ar-36,2n)Pd-92 fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution c-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction(2-6). We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling(7,8)) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.  
  Address [Cederwall, B.; Moradi, F. Ghazi; Back, T.; Johnson, A.; Blomqvist, J.; Andgren, K.; Lagergren, K.; Liotta, R.; Qi, C.; Hadinia, B.; Khaplanov, A.; Persson, A.; Sandzelius, M.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden, Email: cederwall@nuclear.kth.se  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285921600032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 588  
Permanent link to this record
 

 
Author Otten, S.; Caron, S.; de Swart, W.; van Beekveld, M.; Hendriks, L.; van Leeuwen, C.; Podareanu, D.; Ruiz de Austri, R.; Verheyen, R. url  doi
openurl 
  Title Event generation and statistical sampling for physics with deep generative models and a density information buffer Type Journal Article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 12 Issue 1 Pages 2985 - 16pp  
  Keywords  
  Abstract (up) Simulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but to also ensure that these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with several generative machine learning models to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e(+)e(-)-> Z -> l(+)l(-) and pp -> tt<mml:mo><overbar></mml:mover> including the decay of the top quarks and a simulation of the detector response. By buffering density information of encoded Monte Carlo events given the encoder of a Variational Autoencoder we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g., for the phase space integration of matrix elements in quantum field theories. Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.  
  Address [Otten, Sydney; Caron, Sascha; de Swart, Wieske; van Beekveld, Melissa; Hendriks, Luc; Verheyen, Rob] Radboud Univ Nijmegen, Inst Math Astro & Particle Phys IMAPP, Nijmegen, Netherlands, Email: Sydney.Otten@ru.nl  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000658761600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4862  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. url  doi
openurl 
  Title Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations Type Journal Article
  Year 2020 Publication Nature Abbreviated Journal Nature  
  Volume 580 Issue 7803 Pages 339-344  
  Keywords  
  Abstract (up) The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model's charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.  
  Address [Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000530151300023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4388  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A. url  doi
openurl 
  Title Measurement of the inelastic proton-proton cross-section at sqrt(s)=7 TeV with the ATLAS detector Type Journal Article
  Year 2011 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 2 Issue Pages 463 - 14pp  
  Keywords  
  Abstract (up) The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, root s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, root s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic crosssection of 60.3 +/- 2.1 mb is measured for xi > 5x10(-6), where xi is calculated from the invariant mass, M(X), of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.  
  Address [Bechtle, P; Kuutmann, EB; Boehler, M; Ehrenfeld, W; Ferrara, V; Fischer, G; Glazov, A; Goebel, M; Fajardo, LSG; Da Costa, JGPF; Gosdzik, B; Gregor, IM; Hiller, KH; Hristova, I; Husemann, U; Belenguer, MJ; Johnert, S; Karnevskiy, M; Katzy, J; Kono, T; Lankford, AJ; Lobodzinska, E; Ludwig, D; Mattig, S; Medinnis, M; Mijovic, L; Monig, K; Naumann, T; Nozicka, M; Cavalcanti, TP; Petschull, D; Piec, SM; Placakyte, R; Qin, Z; Rubinskiy, I; Stelzer, HJ; Tackmann, K; Terwort, M; Vankov, P; Viti, M; Wildt, MA; Zhu, H] DESY, D-2000 Hamburg, Germany, Email: atlas.publications@cern.ch  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294807200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 758  
Permanent link to this record
 

 
Author Hinke, C.B. et al; Domingo-Pardo, C. doi  openurl
  Title Superallowed Gamow-Teller decay of the doubly magic nucleus Sn-100 Type Journal Article
  Year 2012 Publication Nature Abbreviated Journal Nature  
  Volume 486 Issue 7403 Pages 341-345  
  Keywords  
  Abstract (up) The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During beta(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of Sn-100, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the beta-decay of Sn-100, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear beta-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, In-100, are well reproduced by modern, large-scale shell model calculations.  
  Address [Hinke, C. B.; Boehmer, M.; Faestermann, T.; Gernhaeuser, R.; Kruecken, R.; Maier, L.; Steiger, K.; Straub, K.; Nebel, F.; Schwertel, S.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany, Email: thomas.faestermann@ph.tum.de  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305466800032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1055  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva