toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title NEXT-100 Technical Design Report (TDR). Executive summary Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages T06001 - 34pp  
  Keywords Detector design and construction technologies and materials; Time projection chambers  
  Abstract (up) In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (beta beta 0v) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 x 8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.  
  Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot, M.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306072000030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1097  
Permanent link to this record
 

 
Author NEXT Collaboration (Renner, J. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Ionization and scintillation of nuclear recoils in gaseous xenon Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 793 Issue Pages 62-74  
  Keywords Dark matter; High pressure xenon gas; WIMP; Neutrino less double beta decay; Nuclear recoils  
  Abstract (up) Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.  
  Address [Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.] LBNL, Berkeley, CA 94720 USA, Email: jrenner@lbl.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355774500011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2247  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 10 Pages 903 - 19pp  
  Keywords  
  Abstract (up) Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.  
  Address [Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000866503200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5386  
Permanent link to this record
 

 
Author Coloma, P.; Martin-Albo, J.; Urrea, S. url  doi
openurl 
  Title Discovering long-lived particles at DUNE Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 3 Pages 035013 - 24pp  
  Keywords  
  Abstract (up) Long-lived particles (LLPs) arise in many theories beyond the Standard Model. These may be copiously produced from meson decays (or through their mixing with the LLPs) at neutrino facilities and leave a visible decay signal in nearby neutrino detectors. We compute the expected sensitivity of the DUNE liquid argon (LAr) and gaseous argon near detectors (NDs) to light LLP decays. In doing so, we determine the expected backgrounds for both detectors, which have been largely overlooked in the literature, taking into account their angular and energy resolution. We show that searches for LLP decays into muon pairs, or into three pions, would be extremely clean. Conversely, decays into two photons would be affected by large backgrounds from neutrino interactions for both near detectors; finally, the reduced signal efficiency for e thorn e- pairs leads to a reduced sensitivity for ND-LAr. Our results are first presented in a model -independent way, as a function of the mass of the new state and its lifetime. We also provide detailed calculations for several phenomenological models with axionlike particles (coupled to gluons, electroweak bosons, or quark currents). Some of our results may also be of interest for other neutrino facilities using a similar detector technology (e.g., MicroBooNE, SBND, ICARUS, or the T2K near detector).  
  Address [Coloma, Pilar] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001183262300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6047  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 9 Pages 092012 - 22pp  
  Keywords  
  Abstract (up) Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001010953400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5588  
Permanent link to this record
 

 
Author HARP Collaboration (Apollonio, M. et al); Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M. url  doi
openurl 
  Title Measurements of forward proton production with incident protons and charged pions on nuclear targets at the CERN Proton Synchroton Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 82 Issue 4 Pages 045208 - 33pp  
  Keywords  
  Abstract (up) Measurements of the double-differential proton production cross-section d(2 sigma)/dpd Omega in the range of momentum 0.5 GeV/c <= p < 8.0 GeV/c and angle 0.05 rad <= theta < 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper, tin, tantalum, and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3, 5, 8, and 12 GeV/c). Measurements are compared with predictions of the GEANT4 and MARS Monte Carlo generators.  
  Address [Bonesini, M.; Ferri, F.] Sez INFN Milano Bicocca, Milan, Italy, Email: maurizio.bonesini@mib.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283579000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 346  
Permanent link to this record
 

 
Author Contreras, T.; Martins, A.; Stanford, C.; Escobar, C.O.; Guenette, R.; Stancari, M.; Martin-Albo, J.; Lawrence-Sanderson, B.; Para, A.; Kish, A.; Kellerer, F. url  doi
openurl 
  Title A method to characterize metalenses for light collection applications Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 9 Pages T09004 - 11pp  
  Keywords  
  Abstract (up) Metalenses and metasurfaces are promising emerging technologies that could improve light collection in light collection detectors, concentrating light on small area photodetectors such as silicon photomultipliers. Here we present a detailed method to characterize metalenses to assess their efficiency at concentrating monochromatic light coming from a wide range of incidence angles, not taking into account their imaging quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6086  
Permanent link to this record
 

 
Author Martins, A.; da Mota, A.F.; Stanford, C.; Contreras, T.; Martin-Albo, J.; Kish, A.; Escobar, C.O.; Para, A.; Guenette, R. url  doi
openurl 
  Title Simple strategy for the simulation of axially symmetric large-area metasurfaces Type Journal Article
  Year 2024 Publication Journal of the Optical Society of America B Abbreviated Journal J. Opt. Soc. Am. B  
  Volume 41 Issue 5 Pages 1261-1269  
  Keywords  
  Abstract (up) Metalenses are composed of nanostructures for focusing light and have been widely explored in many exciting applications. However, their expanding dimensions pose simulation challenges. We propose a method to simulate metalenses in a timely manner using vectorial wave and ray tracing models. We sample the metalens's radial phase gradient and locally approximate the phase profile by a linear phase response. Each sampling point is modeled as a binary blazed grating, employing the chosen nanostructure, to build a transfer function set. The metalens transmission or reflection is then obtained by applying the corresponding transfer function to the incoming field on the regions surrounding each sampling point. Fourier optics is used to calculate the scattered fields under arbitrary illumination for the vectorial wave method, and a Monte Carlo algorithm is used in the ray tracing formalism. We validated our method against finite -difference time domain simulations at 632 nm, and we were able to simulate metalenses larger than 3000 wavelengths in diameter on a personal computer.  
  Address [Martins, Augusto; Guenette, Roxanne] Univ Manchester, Dept Phys, Manchester M13 9PL, England, Email: augusto.martins@york.ac.uk  
  Corporate Author Thesis  
  Publisher Optica Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0740-3224 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001237140900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6140  
Permanent link to this record
 

 
Author Loya Villalpando, A.A.; Martin-Albo, J.; Chen, W.T.; Guenette, R.; Lego, C.; Park, J.S.; Capasso, F. url  doi
openurl 
  Title Improving the light collection efficiency of silicon photomultipliers through the use of metalenses Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 11 Pages P11021 - 13pp  
  Keywords Optical detector readout concepts; Solid state detectors; Dark Matter detectors (WIMPS, axions, etc); Double-beta decay detectors  
  Abstract (up) Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3 x 1 3 mm(2) SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay.  
  Address [Villalpando, A. A. Loya; Martin-Albo, J.; Guenette, R.; Lego, C.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: aloyavil@caltech.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595650800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4634  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Menendez, J.; Mezzetto, M.; Monrabal, F.; Sorel, M. doi  openurl
  Title The search for neutrinoless double-beta decay Type Journal Article
  Year 2024 Publication Rivista del Nuovo Cimento Abbreviated Journal Riv. Nuovo Cimento  
  Volume 46 Issue Pages 619-692  
  Keywords Neutrinos; Majorana; Double-beta decay; Nuclear matrix elements  
  Abstract (up) Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle-physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.  
  Address [Gomez-Cadenas, Juan Jose; Monrabal, Francesc] Donostia Int Phys Ctr, ERC Basque Excellence Res Ctr, Donostia San Sebastian 20018, Spain, Email: jjgomezcadenas@dipc.org  
  Corporate Author Thesis  
  Publisher Springernature Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0393-697x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151173800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5915  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva