toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P11006 - 20pp  
  Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract (down) XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.  
  Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345026000020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2061  
Permanent link to this record
 

 
Author Di Bari, P.; Ludl, P.O.; Palomares-Ruiz, S. url  doi
openurl 
  Title Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 044 - 41pp  
  Keywords dark matter theory; leptogenesis; physics of the early universe; ultra high energy photons and neutrinos  
  Abstract (down) We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N-DM with mass M-DM, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, Ns with mass M-S, induced by Higgs portal interactions. The same interactions are also responsible for N-DM decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M-DM >> M-S, there is an allowed window on M-DM values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV less than or similar to M-S < M-DM < 10PeV. We discuss the specific properties of this high-energy neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.  
  Address [Di Bari, Pasquale; Ludl, Patrick Otto] Univ Southampton, Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: P.Di-Bari@soton.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397734100044 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3020  
Permanent link to this record
 

 
Author Doncel, M.; Cederwall, B.; Martin, S.; Quintana, B.; Gadea, A.; Farnea, E.; Algora, A. doi  openurl
  Title Conceptual design of a high resolution Ge array with tracking and imaging capabilities for the DESPEC (FAIR) experiment Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P06010 - 15pp  
  Keywords Gamma detectors (scintillators, CZT, HPG, HgI etc); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract (down) We present results of Monte Carlo simulations for the conceptual design of the high-resolution DESPEC Germanium Array Spectrometer (DEGAS) proposed for the Facility for Ion and Antiproton Research (FAIR) under construction at Darmstadt, Germany. The project is carried out in three phases, although only results for the two first phases will be addressed in this work. The first phase will consist of a re-arrangement of the EUROBALL cluster detectors previously used in the RISING campaign at GSI. The second phase is based on coupling AGATA-type triple-cluster detectors with EUROBALL cluster detectors in a compact geometry around the active ion implantation target of DESPEC.  
  Address [Doncel, M.; Cederwall, B.] Royal Inst Technol, Dept Phys, S-10691 Stockholm, Sweden, Email: doncel@kth.se  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358004200026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2316  
Permanent link to this record
 

 
Author NOMAD Collaboration (Kullenberg, C.T. et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J. url  doi
openurl 
  Title A search for single photon events in neutrino interactions Type Journal Article
  Year 2012 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 706 Issue 4-5 Pages 268-275  
  Keywords Single photon; Neutrino; Neutral current; Coherent; Pion  
  Abstract (down) We present a search for neutrino induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is similar or equal to 25 GeV. The search is motivated by an excess of electron-like events in the 200-475 MeV energy region as reported by the MiniBooNE experiment. In NOMAD, photons are identified via their conversion to e(+)e(-) in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurring outside the fiducial volume. All three backgrounds are determined in situ using control data samples prior to opening the 'signal-box'. In the signal region, we observe 155 events with a predicted background of 129.2 +/- 8.5 +/- 3.3. We interpret this as null evidence for excess of single photon events, and set a limit. Assuming that the hypothetical single photon has a momentum distribution similar to that of a photon from the coherent pi(0) decay, the measurement yields an upper limit on single photon events, < 4.0 x 10(-4) per nu(mu) charged current event. Narrowing the search to events where the photon is approximately collinear with the incident neutrino, we observe 78 events with a predicted background of 76.6 +/- 4.9 +/- 1.9 yielding a more stringent upper limit, < 1.6 x 10(-4) per nu(mu) charged current event.  
  Address [Kullenberg, C. T.; Mishra, S. R.; Dimmery, D.; Tian, X. C.; Godley, A.; Kim, J. J.; Ling, J.; Petti, R.; Wu, Q.] Univ S Carolina, Columbia, SC 29208 USA, Email: sanjib@sc.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000299756800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 886  
Permanent link to this record
 

 
Author Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Nacher, E.; Tain, J.L.; Tolosa, A. url  doi
openurl 
  Title On the performance of large monolithic LaCl3(Ce) crystals coupled to pixelated silicon photosensors Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P03014 - 17pp  
  Keywords Compton imaging; Detector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Gamma detectors (scintillators CZT HPG HgI etc); Instrumentation and methods for time-of-flight (TOF); spectroscopy  
  Abstract (down) We investigate the performance of large area radiation detectors, with high energy-and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (50 x 50 mm(2)) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 8 x 8 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm(2)), with a pixel size of 6 x 6 mm(2), we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thick-nesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, we use our MC code to explore the impact of a smaller photosensor segmentation on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 3 x 3 mm(2).  
  Address [Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Tain, J. L.; Tolosa, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: Luis.Caballero@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428146300004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3542  
Permanent link to this record
 

 
Author NEMO-3 Collaboration (Argyriades, J. et al); Diaz, J.; Martin-Albo, J.; Monrabal, F.; Novella, P.; Serra, L.; Yahlali, N. url  doi
openurl 
  Title Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 625 Issue 1 Pages 20-28  
  Keywords Scintillation; Photomultiplier; Plastic scintillators; Optical photon transport; GEANT 4; Double beta decay  
  Abstract (down) We have constructed a GEANT4-based detailed software model of photon transport in plastic sontillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutnnoless double beta decay We compare our simulations to measurements using conversion electrons from a calibration source of (BI)-B-207 and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account In this article we briefly describe our modeling approach and results of our studies.  
  Address [Lang, K.; Pahlka, R. B.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285432400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 587  
Permanent link to this record
 

 
Author Caputo, A.; Esposito, A.; Geoffray, E.; Polosa, A.D.; Sun, S.C. url  doi
openurl 
  Title Dark matter, dark photon and superfluid He-4 from effective field theory Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 802 Issue Pages 135258 - 6pp  
  Keywords Light dark matter; Effective theory; Helium; Phonon; Dark photon  
  Abstract (down) We consider a model of sub-GeV dark matter whose interaction with the Standard Model is mediated by a new vector boson (the dark photon) which couples kinetically to the photon. We describe the possibility of constraining such a model using a superfluid He-4 detector, by means of an effective theory for the description of the superfluid phonon. We find that such a detector could provide bounds that are competitive with other direct detection experiments only for ultralight vector mediator, in agreement with previous studies. As a byproduct we also present, for the first time, the low-energy effective field theory for the interaction between photons and phonons.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: angelo.esposito@epfl.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515091400017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4349  
Permanent link to this record
 

 
Author Garcfa-Barcelo, J.M.; Melcon, A.A.; Cuendis, S.A.; Diaz-Morcillo, A.; Gimeno, B.; Kanareykin, A.; Lozano-Guerrero, A.J.; Navarro, P.; Wuensch, W. url  doi
openurl 
  Title On the Development of New Tuning and Inter-Coupling Techniques Using Ferroelectric Materials in the Detection of Dark Matter Axions Type Journal Article
  Year 2023 Publication IEEE Access Abbreviated Journal IEEE Access  
  Volume 11 Issue Pages 30360-30372  
  Keywords Tuning; Couplings; Permittivity; Dark matter; Magnetic resonance; Cryogenics; Receivers; Ferroelectrics; Microwave devices; Axion detection; axion-photon interaction; dark matter; ferroelectrics; haloscope; KTO; microwave resonator; STO; tuning  
  Abstract (down) Tuning is an essential requirement for the search of dark matter axions employing haloscopes since its mass is not known yet to the scientific community. At the present day, most haloscope tuning systems are based on mechanical devices which can lead to failures due to the complexity of the environment in which they are used. However, the electronic tuning making use of ferroelectric materials can provide a path that is less vulnerable to mechanical failures and thus complements and expands current tuning systems. In this work, we present and design a novel technique for using the ferroelectric Potassium Tantalate (KTaO3 or KTO) material as a tuning element in haloscopes based on coupled microwave cavities. In this line, the structures used in the Relic Axion Detector Exploratory Setup (RADES) group are based on several cavities that are connected by metallic irises, which act as interresonator coupling elements. In this article, we also show how to use these KTaO3 films as interresonator couplings between cavities, instead of inductive or capacitive metallic windows used in the past. These two techniques represent a crucial upgrade over the current systems employed in the dark matter axions community, achieving a tuning range of 2.23% which represents a major improvement as compared to previous works (<0.1%) for the same class of tuning systems. The theoretical and simulated results shown in this work demonstrate the interest of the novel techniques proposed for the incorporation of this kind of ferroelectric media in multicavity resonant haloscopes in the search for dark matter axions.  
  Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: josemaria.garcia@upct.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000966674500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5513  
Permanent link to this record
 

 
Author Alekhin, S. et al; Hernandez, P. url  doi
openurl 
  Title A facility to search for hidden particles at the CERN SPS: the SHiP physics case Type Journal Article
  Year 2016 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 79 Issue 12 Pages 124201 - 137pp  
  Keywords beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons  
  Abstract (down) This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 μand to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.  
  Address [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: oleg.ruchayskiy@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387025400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2852  
Permanent link to this record
 

 
Author Agaras, M.N. et al; Fiorini, L. url  doi
openurl 
  Title Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2 Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 6 Pages P06023 - 35pp  
  Keywords Calorimeter methods; Photon detectors for UV; visible and IR photons (vacuum) (photomultipliers; HPDs; others); Calorimeters; Scintillators; scintillation and light emission processes (solid; gas and liquid scintillators)  
  Abstract (down) This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current.  
  Address [Agaras, M. N.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain, Email: rute.pedro@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001108200700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5970  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva