toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pastore, A.; Tarpanov, D.; Davesne, D.; Navarro, J. url  doi
openurl 
  Title Spurious finite-size instabilities in nuclear energy density functionals: Spin channel Type Journal Article
  Year 2015 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 92 Issue 2 Pages 024305 - 9pp  
  Keywords  
  Abstract (up) Background: It has been recently shown that some Skyrme functionals can lead to nonconverging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. Purpose: We show that the finite-size instabilities not only affect the ground-state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. Method: We perform systematic fully-self consistent random phase approximation (RPA) calculations in spherical doubly magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term s . Delta s. We determine critical values of these coupling constants beyond which the RPA calculations do not converge because the RPA stability matrix becomes nonpositive. Results: By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. Conclusions: We find a quantitative stability criterion to detect finite-size instabilities related to the spin s . Delta s term of a functional. This criterion could be easily implemented in the standard fitting protocols to fix the coupling constants of the Skyrme functional.  
  Address [Pastore, A.] CEA, DAM, DIF, F-91297 Arpajon, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358933500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2320  
Permanent link to this record
 

 
Author Davesne, D.; Meyer, J.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Partial wave decomposition of the N3LO equation of state Type Journal Article
  Year 2015 Publication Physica Scripta Abbreviated Journal Phys. Scr.  
  Volume 90 Issue 11 Pages 114002 - 6pp  
  Keywords nuclear structure; equation of state; effective theory  
  Abstract (up) By means of a partial wave decomposition, we separate their contributions to the equation of state (EoS) of symmetric nuclear matter for the N3LO pseudo-potential. In particular, we show that although both the tensor and the spin-orbit terms do not contribute to the EoS, they give a non-vanishing contribution to the separate (JLS) channels.  
  Address [Davesne, D.; Meyer, J.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon,UMR 5822, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000366871100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2508  
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J. doi  openurl
  Title Hartree-Fock Calculations in Semi-Infinite Matter with Gogny Interactions Type Journal Article
  Year 2023 Publication Universe Abbreviated Journal Universe  
  Volume 9 Issue 9 Pages 398 - 11pp  
  Keywords Nuclear Density Functional Theory; semi-infinite nuclear matter; Hartree-Fock equations; 21.60.Jz; 21.65.-f; 21.65.Mn  
  Abstract (up) Hartree-Fock equations in semi-infinite nuclear matter for finite range Gogny interactions are presented together with a detailed numerical scheme to solve them. The value of the surface energy is then extracted and given for standard Gogny interactions.  
  Address [Davesne, Dany] Univ Lyon 1, Inst Phys Infinis Lyon 2, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001074530100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5693  
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Fitting (NLO)-L-3 pseudo-potentials through central plus tensor Landau parameters Type Journal Article
  Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 41 Issue 6 Pages 065104 - 12pp  
  Keywords Landau parameters; (NLO)-L-3; phenomenological interactions; fitting methods  
  Abstract (up) Landau parameters determined from phenomenological finite-range interactions are used to get an estimation of next-to-next-to-next-to-leading order ((NLO)-L-3) pseudo-potentials parameters. The parameter sets obtained in this way are shown to lead to consistent results concerning saturation properties. The uniqueness of this procedure is discussed, and an estimate of the error induced by the truncation at (NLO)-L-3 is given.  
  Address [Davesne, D.] Univ Lyon, F-69622 Lyon, France, Email: davesne@inpl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338425100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1838  
Permanent link to this record
 

 
Author Pastore, A.; Davesne, D.; Navarro, J. url  doi
openurl 
  Title Linear response of homogeneous nuclear matter with energy density functionals Type Journal Article
  Year 2015 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 563 Issue Pages 1-67  
  Keywords Skyrme functional; Linear response theory; Landau parameters  
  Abstract (up) Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.  
  Address [Pastore, A.] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: davesne@ipnl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350515400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2143  
Permanent link to this record
 

 
Author Davesne, D.; Navarro, J.; Meyer, J.; Bennaceur, K.; Pastore, A. url  doi
openurl 
  Title Two-body contributions to the effective mass in nuclear effective interactions Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 97 Issue 4 Pages 044304 - 7pp  
  Keywords  
  Abstract (up) Starting from general expressions of well-chosen symmetric nuclear matter quantities derived for both zero-and finite-range effective theories, we derive some universal relations between them. We first showthat, independently of the range, the two-body contribution is enough to describe correctly the saturation mechanism but gives an effective mass value around m(*)/m similar or equal to 0.4 when the other properties of the saturation point are set near their generally accepted values. Then, we show that a more elaborated interaction (for instance, an effective two-body density-dependent term on top of the pure two-body term) is needed to reach the accepted value m(*)/m similar or equal to 0.7-0.8.  
  Address [Davesne, D.; Meyer, J.; Bennaceur, K.] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, IPNL,UMR 5822, 4 Rue E Fermi, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429456600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3554  
Permanent link to this record
 

 
Author Pastore, A.; Martini, M.; Davesne, D.; Navarro, J.; Goriely, S.; Chamel, N. url  doi
openurl 
  Title Linear response theory and neutrino mean free path using Brussels-Montreal Skyrme functionals Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 90 Issue 2 Pages 025804 - 11pp  
  Keywords  
  Abstract (up) The Brussels-Montreal Skyrme functionals have been successful in describing properties of both finite nuclei and infinite homogeneous nuclear matter. In their latest version, these functionals have been equipped with two extra density-dependent terms in order to reproduce simultaneously ground state properties of nuclei and infinite nuclear matter properties while avoiding at the same time the arising of ferromagnetic instabilities. In the present article, we extend our previous results of the linear response theory to include such extra terms at both zero and finite temperature in pure neutron matter. The resulting formalism is then applied to derive the neutrino mean free path. The predictions from the Brussels-Montreal Skyrme functionals are compared with ab initio methods.  
  Address [Pastore, A.; Martini, M.; Goriely, S.; Chamel, N.] Univ Libre Brussels, Inst Astron & Astrophys, B-1050 Brussels, Belgium  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341027800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1901  
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Skyrme effective pseudopotential up to the next-to-next-to-leading order Type Journal Article
  Year 2013 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 40 Issue 9 Pages 095104 - 8pp  
  Keywords  
  Abstract (up) The explicit form of the next-to-next-to-leading order ((NLO)-L-2) of the Skyrme effective pseudopotential compatible with all required symmetries and especially with gauge invariance is presented in a Cartesian basis. It is shown in particular that for such a pseudopotential there is no spin-orbit contribution and that the D-wave term suggested in the original Skyrme formulation does not satisfy the invariance properties. The six new (NLO)-L-2 terms contribute to both the equation of state and the Landau parameters. These contributions to symmetric nuclear matter are given explicitly and discussed.  
  Address [Davesne, D.] Univ Lyon, F-69622 Lyon, France, Email: davesne@ipnl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000323135200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1558  
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Linear response theory in asymmetric nuclear matter for Skyrme functionals including spin-orbit and tensor terms Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 89 Issue 4 Pages 044302 - 14pp  
  Keywords  
  Abstract (up) The formalism of linear response theory for a Skyrme functional including spin-orbit and tensor terms is generalized to the case of infinite nuclear matter with arbitrary isospin asymmetry. Response functions are obtained by solving an algebraic system of equations, which is explicitly given. Spin-isospin strength functions are analyzed varying the conditions of density, momentum transfer, asymmetry, and temperature. The presence of instabilities, including the spinodal one, is studied by means of the static susceptibility.  
  Address [Davesne, D.] Univ Lyon, F-69003 Lyon, France, Email: davesne@ipnl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334296000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1758  
Permanent link to this record
 

 
Author Becker, P.; Davesne, D.; Meyer, J.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Tools for incorporating a D-wave contribution in Skyrme energy density functionals Type Journal Article
  Year 2015 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 42 Issue 3 Pages 034001 - 19pp  
  Keywords energy density functional; D-wave; Skyrme pseudo-potential; linear response theory  
  Abstract (up) The possibility of adding a D-wave term to the standard Skyrme effective interaction has been widely considered in the past. Such a term has been shown to appear in the next-to-next-to-leading order of the Skyrme pseudo-potential. The aim of the present article is to provide the necessary tools to incorporate this term in a fitting procedure: first, a mean-field equation written in spherical symmetry in order to describe spherical nuclei and second, the response function to detect unphysical instabilities. With these tools it will be possible to build a new fitting procedure to determine the coupling constants of the new functional.  
  Address [Becker, P.; Davesne, D.; Meyer, J.] Univ Lyon, F-69622 Lyon, France, Email: apastore@ulb.ac.be  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000353300200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2202  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva