Perez-Cerdan, A. B., Rubio, B., Gelletly, W., Algora, A., Agramunt, J., Nacher, E., et al. (2013). Deformation of Sr and Rb isotopes close to the N = Z line via beta-decay studies using the total absorption technique. Phys. Rev. C, 88(1), 014324–15pp.
Abstract: A study of the Gamow-Teller strength distributions B(GT) in the beta decay of Sr-78 and Rb-76,Rb-78 has been made using a total absorption spectrometer (TAS). Following the success in deducing the sign of the deformation for Sr-76, a similar approach is adopted for Sr-78 based on a comparison of the measured B(GT) with quasiparticle random-phase approximation calculations. This work confirms its previously expected prolate deformation in the ground state. Conclusions about the structure of the odd-odd Rb-76,Rb-78 isotopes have been drawn based on their measured B(GT) distributions.
|
Grieger, M., Hensel, T., Agramunt, J., Bemmerer, D., Degering, D., Dillmann, I., et al. (2020). Neutron flux and spectrum in the Dresden Felsenkeller underground facility studied by moderated He-3 counters. Phys. Rev. D, 101(12), 123027–15pp.
Abstract: Ambient neutrons may cause significant background for underground experiments. Therefore, it is necessary to investigate their flux and energy spectrum in order to devise a proper shielding. Here, two sets of altogether ten moderated He-3 neutron counters are used for a detailed study of the ambient neutron background in tunnel IV of the Felsenkeller facility, underground below 45 m of rock in Dresden/Germany. One of the moderators is lined with lead and thus sensitive to neutrons of energies higher than 10 MeV. For each He-3 counter moderator assembly, the energy-dependent neutron sensitivity was calculated with the FLUKA code. The count rates of the ten detectors were then fitted with the MAXED and GRAVEL packages. As a result, both the neutron energy spectrum from 10(-9) to 300 MeV and the flux integrated over the same energy range were determined experimentally. The data show that at a given depth, both the flux and the spectrum vary significantly depending on local conditions. Energy-integrated fluxes of (0.61 +/- 0.05), (1.96 +/- 0.15), and (4.6 +/- 0.4) x 10(-4) cm(-2) s(-1), respectively, are measured for three sites within Felsenkeller tunnel IV which have similar muon flux but different shielding wall configurations. The integrated neutron flux data and the obtained spectra for the three sites are matched reasonably well by FLUKA Monte Carlo calculations that are based on the known muon flux and composition of the measurement room walls.
|
Pragati, Deo, A. Y., Podolyak, Z., Walker, P. M., Algora, A., Rubio, B., et al. (2016). Decay of the N=126, Fr-213 nucleus. Phys. Rev. C, 94(6), 064316–8pp.
Abstract: gamma rays following the EC/beta(+) and alpha decay of the N = 126, Fr-213 nucleus have been observed at the CERN isotope separator on-line (ISOLDE) facility with the help of gamma-ray and conversion-electron spectroscopy. These gamma rays establish several hitherto unknown excited states in Rn-213. Also, five new a-decay branches from the Fr-213 ground state have been discovered. Shell model calculations have been performed to understand the newly observed states in Rn-213.
|
Moreno, O., Sarriguren, P., Algora, A., Fraile, L. M., & Orrigo, S. E. A. (2022). Bulk and decay properties of neutron-deficient odd-mass Hg isotopes near A=185. Phys. Rev. C, 106(3), 034317–11pp.
Abstract: Ground and isomeric states of the neutron-deficient odd-A isotopes 183Hg, 185Hg, and 187Hg are described from a microscopic calculation based on a self-consistent, axially deformed Hartree-Fock mean field with the Skyrme functional and pairing within BCS approximation. For each equilibrium shape and different odd-neutron states, results on mean-square charge radii and magnetic dipole moments are given and analyzed in the context of their sensitivity to the nuclear deformation and to the spin and parity. Spin-isospin correlations within proton-neutron quasiparticle random phase approximation are then introduced in the nuclear states to obtain the distributions of Gamow-Teller strength and the beta+/EC half-lives of these isotopes, whose measurements are planned at ISOLDE-CERN using total absorption gamma-ray spectroscopy techniques.
|
Magro Hernandez, R. M., Muñoz-Noval, A., Briz, J. A., Murias, J. R., Espinosa-Rodríguez, A., Fraile, L. M., et al. (2024). Iodine-substituted hydroxyapatite nanoparticles and activation of derived ceramics for range verification in proton therapy. J. Mat. Chem. B, 12, 12030–12037.
Abstract: Osteosarcoma is a radioresistant cancer, and proton therapy is a promising radiation alternative for treating cancer with the advantage of a high dose concentration in the tumor area. In this work, we propose the use of iodine-substituted hydroxyapatite (IHAP) nanomaterials to use iodine (127I) as a proton radiation tracer, providing access to range verification studies in mineralized tissues. For this purpose, the nanomaterials were synthesized at four iodine concentrations via hydrothermal synthesis. The materials were characterized via different microstructural techniques to identify an optimal high iodine concentration and pure apatite phase nanomaterial. Finally, such pure IHAP powders were shaped and irradiated with proton beams of 6 and 10 MeV, and their activation was demonstrated through subsequent decay analysis. The materials could be integrated into phantom structures for the verification of doses and ranges of protons prior to animal testing and clinical proton therapy treatments of tumors located deep under combined soft and calcified tissues. Iodine-substituted hydroxyapatite nanomaterials were synthesised via hydrothermal process to use iodine (127I) as a proton radiation reporter with a view in hard tissue phantoms for proton therapy.
|