|   | 
Details
   web
Records
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A.
Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P11006 - 20pp
Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)
Abstract (down) XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000345026000020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2061
Permanent link to this record
 

 
Author NEXT Collaboration; Carcel, S.; Carrion, J.V.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 7 Pages 075001 - 17pp
Keywords gaseous detectors; scintillators; scintillation and light emission processes; solid; gas and liquid scintillators
Abstract (down) Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
Address [Rogers, L.; Jones, B. J. P.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Byrnes, N.; Dingler, R.; McDonald, A. D.; Nygren, D. R.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: leslie.rogers@mavs.uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000537753800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4423
Permanent link to this record
 

 
Author Diaz-Morcillo, A.; Barcelo, J.M.G.; Guerrero, A.J.L.; Navarro, P.; Gimeno, B.; Cuneáis, S.A.; Melcon, A.A.; Cogollos, C.; Calatroni, S.; Dobrich, B.; Gallego-Puyol, J.D.; Golm, J.; Irastorza, I.G.; Malbrunot, C.; Miralda-Escude, J.; Garay, C.P.; Redondo, J.; Wuensch, W.
Title Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 1 Pages 5 - 22pp
Keywords axions; dark matter detectors; haloscopes; resonant cavities
Abstract (down) With the increasing interest in dark matter axion detection through haloscopes, in which different international groups are currently involved, the RADES group was established in 2016 with the goal of developing very sensitive detection systems to be operated in dipole magnets. This review deals with the work developed by this collaboration during its first five years: from the first designs-based on the multi-cavity concept, aiming to increase the haloscope volume, and thereby improve sensitivity-to their evolution, data acquisition design, and finally, the first experimental run. Moreover, the envisaged work within RADES for both dipole and solenoid magnets in the short and medium term is also presented.
Address [Diaz-Morcillo, Alejandro; Garcia Barcelo, Jose Maria; Lozano Guerrero, Antonio Jose; Navarro, Pablo; Alvarez Melcon, Alejandro] Univ Politecn Cartagena, Dept Informat & Commun Technol, Cartagena 30202, Spain, Email: alejandro.diaz@upct.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000746970600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5086
Permanent link to this record
 

 
Author Miñano, M.
Title Radiation Hard Silicon Strips Detectors for the SLHC Type Journal Article
Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 58 Issue 3 Pages 1135-1140
Keywords High energy physics; microstrip; radiation detectors; silicon; SLHC
Abstract (down) While the Large Hadron Collider (LHC) began taking data in 2009, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2018. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrade, super-LHC (sLHC) of the ATLAS microstrip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and the detectors under study. This involves designing silicon detectors, irradiating them to the sLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS microstrip detector will be presented. Important challenges related to engineering layout, powering, cooling and reading out a very large strip detector are presented. Ideas on possible schemes for the layout and support mechanics will be shown.
Address IFIC UV CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mercedes.minano@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000291659300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 651
Permanent link to this record
 

 
Author Babiano, V.; Caballero, L.; Calvo, D.; Ladarescu, I.; Olleros, P.; Domingo-Pardo, C.
Title gamma-Ray position reconstruction in large monolithic LaCl3(Ce) crystals with SiPM readout Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 931 Issue Pages 1-22
Keywords Gamma-ray; Position-sensitive detectors; Monolithic crystals; Spatial resolution; Neural networks
Abstract (down) We report on the spatial response characterization of large LaCl3(Ce) monolithic crystals optically coupled to 8 x 8 pixel silicon photomultiplier (SiPM) sensors. A systematic study has been carried out for 511 keV gamma-rays using three different crystal thicknesses of 10 mm, 20 mm and 30 mm, all of them with planar geometry and a base size of 50 x 50 mm(2). In this work we investigate and compare two different approaches for the determination of the main gamma-ray hit location. On one hand, methods based on the fit of an analytical model for the scintillation light distribution provide the best results in terms of linearity and field of view, with spatial resolutions close to similar to 1 mm FWHM. On the other hand, position reconstruction techniques based on neural networks provide similar linearity and field-of-view, becoming the attainable spatial resolution similar to 3 mm FWHM. For the third space coordinate z or depth-of-interaction we have implemented an inverse linear calibration approach based on the cross-section of the measured scintillation-light distribution at a certain height. The detectors characterized in this work are intended for the development of so-called Total Energy Detectors with Compton imaging capability (i-TED), aimed at enhanced sensitivity and selectivity measurements of neutron capture cross sections via the time-of-flight (TOF) technique.
Address [Babiano, V; Caballero, L.; Calvo, D.; Ladarescu, I; Olleros, P.; Domingo-Pardo, C.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000466151600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4015
Permanent link to this record
 

 
Author NEXT Collaboration (Serra, L. et al); Sorel, M.; Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.
Title An improved measurement of electron-ion recombination in high-pressure xenon gas Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P03025 - 21pp
Keywords Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Time projection chambers; Ionization and excitation processes
Abstract (down) We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), filled with pure xenon gas at 10 bar pressure and exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electronion recombination in the gas, with correlation coefficients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0.561 +/- 0.045, translating into an average energy to produce a primary scintillation photon of W-ex = (39.2 +/- 3.2) eV.
Address [Serra, L.; Sorel, M.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: luis.serra@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000357944500075 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2307
Permanent link to this record
 

 
Author NEXT Collaboration (McDonald, A.D. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures Type Journal Article
Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P08009 - 19pp
Keywords Charge transport and multiplication in gas; Gaseous imaging and tracking detectors
Abstract (down) We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all E/P, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low E/P in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger E/P. Drift velocities in xenon-helium mixtures are found to be theoretically well predicted. Although longitudinal diffusion in xenon-helium mixtures is found to be larger than anticipated, extrapolation based on the measured longitudinal diffusion coefficients suggest that the use of helium additives to reduce transverse diffusion in xenon gas remains a promising prospect.
Address [McDonald, A. D.; Woodruff, K.; Al Atoum, B.; Jones, B. J. P.; Laing, A.; Nygren, D. R.; Rogers, L.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: austin.mcdonald@uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000482373600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4118
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K.
Title Impact of COHERENT measurements, cross section uncertainties and new interactions on the neutrino floor Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 055 - 26pp
Keywords dark matter detectors; dark matter experiments; neutrino properties; solar and atmospheric neutrinos
Abstract (down) We reconsider the discovery limit of multi-ton direct detection dark matter experiments in the light of recent measurements of the coherent elastic neutrino-nucleus scattering process. Assuming the cross section to be a parameter entirely determined by data, rather than using its Standard Model prediction, we use the COHERENT CsI and LAr data sets to determine WIMP discovery limits. Being based on a data-driven approach, the results are thus free from theoretical assumptions and fall within the WIMP mass regions where XENONnT and DARWIN have best expected sensitivities. We further determine the impact of subleading nuclear form factor and weak mixing angle uncertainties effects on WIMP discovery limits. We point out that these effects, albeit small, should be taken into account. Moreover, to quantify the impact of new physics effects in the neutrino background, we revisit WIMP discovery limits assuming light vector and scalar mediators as well as neutrino magnetic moments/transitions. We stress that the presence of new interactions in the neutrino sector, in general, tend to worsen the WIMP discovery limit.
Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-5,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000751303400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5123
Permanent link to this record
 

 
Author Aja, B. et al; Gimeno, B.
Title The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors Type Journal Article
Year 2022 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 044 - 29pp
Keywords dark matter experiments; axions; dark matter detectors
Abstract (down) We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 μeV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
Address [Aja, Beatriz; Artal, Eduardo; de la Fuente, Luisa; Pablo Pascual, Juan] Univ Cantabria, Dept Ingn Comunicac, Plaza Ciencia, Santander 39005, Spain, Email: ajab@unican.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000934034600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5478
Permanent link to this record
 

 
Author Aplin, S.; Boronat, M.; Dannheim, D.; Duarte, J.; Gaede, F.; Ruiz-Jimeno, A.; Sailer, A.; Valentan, M.; Vila, I.; Vos, M.
Title Forward tracking at the next e(+)e(-) collider part II: experimental challenges and detector design Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages T06001 - 26pp
Keywords Particle tracking detectors; Large detector systems for particle and astroparticle physics; Particle tracking detectors (Solid-state detectors)
Abstract (down) We present the second in a series of studies into the forward tracking system for a future linear e(+)e(-) collider with a center-of-mass energy in the range from 250 GeV to 3 TeV. In this note a number of specific challenges are investigated, which have caused a degradation of the tracking and vertexing performance in the forward region in previous experiments. We perform a quantitative analysis of the dependence of the tracking performance on detector design parameters and identify several ways to mitigate the performance loss for charged particles emitted at shallow angle.
Address [Aplin, S.; Gaede, F.] Deutsche Elektronen Synchrotron, D-22607 Hamburg, Germany
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000321627400024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1503
Permanent link to this record