toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 7 Pages 072006 - 32pp  
  Keywords  
  Abstract The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4 sigma (5 sigma) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3 sigma for almost all true delta(CP) values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3 sigma level with a 100 kt-MW-CY exposure for the maximally CP-violating values delta(CP) = +/-pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: cwilkinson@lbl.gov  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000809663000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5260  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 7 Pages 618 - 29pp  
  Keywords  
  Abstract DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: clara.cuesta@ciemat.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000826161300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5293  
Permanent link to this record
 

 
Author Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J. url  doi
openurl 
  Title High-energy colliders as a probe of neutrino properties Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 829 Issue Pages 137110 - 5pp  
  Keywords  
  Abstract The mediators of neutrino mass generation can provide a probe of neutrino properties at the next round of high-energy hadron (FCC-hh) and lepton colliders (FCC-ee/ILC/CEPC/CLIC). We show how the decays of the Higgs triplet scalars mediating the simplest seesaw mechanism can shed light on the neutrino mass scale and mass-ordering, as well as the atmospheric octant. Four-lepton signatures at the high-energy frontier may provide the discovery-site for charged lepton flavor non-conservation in nature, rather than low-energy intensity frontier experiments.  
  Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000831681800020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5301  
Permanent link to this record
 

 
Author Batra, A.; Bharadwaj, P.; Mandal, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title W-mass anomaly in the simplest linear seesaw mechanism Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 834 Issue Pages 137408 - 12pp  
  Keywords  
  Abstract The simplest linear seesaw mechanism can accommodate the new CDF-II W mass measurement. In addition to Standard Model particles, the model includes quasi-Dirac leptons, and a second, leptophilic, scalar doublet seeding small neutrino masses. Our proposal is consistent with electroweak precision tests, neutrino physics, rare decays and collider restrictions, requiring a new charged scalar below a few TeV, split in mass from the new degenerate scalar and pseudoscalar neutral Higgs bosons.  
  Address [Batra, Aditya; Bharadwaj, Praveen; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: adityab17@iiserb.ac.in;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000864095300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5384  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 10 Pages 903 - 19pp  
  Keywords  
  Abstract Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.  
  Address [Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000866503200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5386  
Permanent link to this record
 

 
Author Addazi, A.; Ricciardi, G.; Scarlatella, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Interpreting B anomalies within an extended 331 gauge theory Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 3 Pages 035030 - 14pp  
  Keywords  
  Abstract In light of the recent R-K(*) data on neutral current flavor anomalies in B -> K-(*())l(+)l(-) decays, we reexamine their quantitative interpretation in terms of an extended 331 gauge theory framework. We achieve this by adding two extra lepton species with novel 331 charges, while ensuring that the model remains anomaly-free. In contrast to the canonical 331 models, the gauge charges of the first and second lepton families differ from each other, allowing lepton-flavor universality violation. We further expand the model by adding the neutral fermions required to provide an adequate description for small neutrino masses.  
  Address [Addazi, Andrea] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: Addazi@scu.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000872136400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5393  
Permanent link to this record
 

 
Author Chatterjee, S.S.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Nonunitarity of the lepton mixing matrix at the European Spallation Source Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 7 Pages 075016 - 16pp  
  Keywords  
  Abstract If neutrinos get mass through the exchange of lepton mediators, as in seesaw schemes, the neutrino appearance probabilities in oscillation experiments are modified due to effective nonunitarity of the lepton mixing matrix. This also leads to new CP phases and an ambiguity in underpinning the “conventional” phase of the three-neutrino paradigm. We study the CP sensitivities of various setups based at the European Spallation Source neutrino super-beam (ESSnuSB) experiment in the presence of nonunitarity. We also examine its potential in constraining the associated new physics parameters. Moreover, we show how the combination of DUNE and ESSnuSB can help further improve the sensitivities on the nonunitarity parameters.  
  Address [Chatterjee, Sabya Sachi] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France, Email: sabya-sachi.chatterjee@ipht.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898616000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5440  
Permanent link to this record
 

 
Author Majumdar, A.; Papoulias, D.K.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Physics implications of recent Dresden-II reactor data Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 093010 - 14pp  
  Keywords  
  Abstract Prompted by the recent Dresden-II reactor data, we examine its implications for the determination of the weak mixing angle, paying attention to the effect of the quenching function. We also determine the resulting constraints on the unitarity of the neutrino mixing matrix, as well as on the most general type of nonstandard neutral-current neutrino interactions.  
  Address [Majumdar, Anirban; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: anirban19@iiserb.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000917769000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5469  
Permanent link to this record
 

 
Author De Romeri, V.; Miranda, O.G.; Papoulias, D.K.; Sanchez Garcia, G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Physics implications of a combined analysis of COHERENT CsI and LAr data Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 035 - 41pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties  
  Abstract The observation of coherent elastic neutrino nucleus scattering has opened the window to many physics opportunities. This process has been measured by the COHERENT Collaboration using two different targets, first CsI and then argon. Recently, the COHERENT Collaboration has updated the CsI data analysis with a higher statistics and an improved understanding of systematics. Here we perform a detailed statistical analysis of the full CsI data and combine it with the previous argon result. We discuss a vast array of implications, from tests of the Standard Model to new physics probes. In our analyses we take into account experimental uncertainties associated to the efficiency as well as the timing distribution of neutrino fluxes, making our results rather robust. In particular, we update previous measurements of the weak mixing angle and the neutron root mean square charge radius for CsI and argon. We also update the constraints on new physics scenarios including neutrino nonstandard interactions and the most general case of neutrino generalized interactions, as well as the possibility of light mediators. Finally, constraints on neutrino electromagnetic properties are also examined, including the conversion to sterile neutrino states. In many cases, the inclusion of the recent CsI data leads to a dramatic improvement of bounds.  
  Address [De Romeri, V.; Garcia, G. Sanchez; Tortola, M.; Valle, J. W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cientif Paterna,C Catedrat Jose Beltran, 2, E-46980 Valencia, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000966129600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5512  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N. url  doi
openurl 
  Title Highly-parallelized simulation of a pixelated LArTPC on a GPU Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 4 Pages P04034 - 35pp  
  Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)  
  Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986658100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5551  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva