|   | 
Details
   web
Records
Author n_TOF Collaboration (Mazzone, A. et al); Babiano-Suarez, V; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I; Tain, J.L.
Title Measurement of the Gd-154(n, gamma) cross section and its astrophysical implications Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B
Volume 804 Issue Pages 135405 - 6pp
Keywords s process; Gd-154; Neutron time of flight; n_TOF
Abstract The neutron capture cross section of Gd-154 was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in Gd-154. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted Gd-154(n, gamma) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
Address [Mazzone, A.; Barbagallo, M.; Colonna, N.; Damone, L. A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Bari, Italy, Email: Cristian.Massimi@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000548740300022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4464
Permanent link to this record
 

 
Author AGATA Collaboration (Siciliano, M. et al); Gadea, A.; Perez-Vidal, R.M.; Domingo-Pardo, C.
Title Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in Sn-106,Sn-108 Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B
Volume 806 Issue Pages 135474 - 7pp
Keywords Lifetime; Nuclear structure; Multi-nucleon transfer; Light Sn; Tracking array
Abstract The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. The nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. The emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B(E2;(+)(4) -> 2(1)(+)) values, measured here for the first time, depend critically on a delicate pairing-quadrupole balance, disclosed by the very precise results in Sn-108.
Address [Siciliano, M.; Valiente-Dobon, J. J.; Goasduff, A.; Jaworski, G.; Marchi, T.; Napoli, D. R.; Saygi, B.; Egea-Canet, F. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, PD, Italy, Email: marco.siciliano@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000571760900006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4539
Permanent link to this record
 

 
Author AGATA Collaboration (Avigo, R. et al); Domingo-Pardo, C.; Gadea, A.; Gonzalez, V.
Title Low-lying electric dipole gamma-continuum for the unstable Fe-62(,)64 nuclei: Strength evolution with neutron number Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B
Volume 811 Issue Pages 135951 - 6pp
Keywords Fe-64; Fe-62; Nuclear structure; Dipole excitation around neutron threshold
Abstract The gamma-ray emission from the nuclei Fe-62,Fe-64 following Coulomb excitation at bombarding energy of 400-440 AMeV was measured with special focus on E1 transitions in the energy region 4-8 MeV. The unstable neutron-rich nuclei Fe-62,Fe-64 were produced at the FAIR-GSI laboratories and selected with the FRS spectrometer. The gamma decay was detected with AGATA. From the measured gamma-ray spectra the summed E1 strength is extracted and compared to microscopic quasi-particle phonon model calculations. The trend of the E1 strength with increasing neutron number is found to be fairly well reproduced with calculations that assume a rather complex structure of the 1(-) states (three-phonon states) inducing a strong fragmentation of the E1 nuclear response below the neutron binding energy.
Address [Avigo, R.; Wieland, O.; Bracco, A.; Camera, F.; Benzoni, G.; Blasi, N.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Leoni, S.; Million, B.; Morales, A., I; Pullia, A.; Riboldi, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy, Email: oliver.wieland@mi.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000612225400080 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4700
Permanent link to this record
 

 
Author Hall, O. et al; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tain, J.L.; Tolosa-Delgado, A.
Title beta-delayed neutron emission of r-process nuclei at the N=82 shell closure Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B
Volume 816 Issue Pages 136266 - 7pp
Keywords beta-delayed neutron emission; r-processimportant
Abstract Theoretical models of beta-delayed neutron emission are used as crucial inputs in r-process calculations. Benchmarking the predictions of these models is a challenge due to a lack of currently available experimental data. In this work the beta-delayed neutron emission probabilities of 33 nuclides in the important mass regions south and south-west of Sn-132 are presented, 16 for the first time. The measurements were performed at RIKEN using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The P-1n values presented constrain the predictions of theoretical models in the region, affecting the final abundance distribution of the second r-process peak at A approximate to 130.
Address [Hall, O.; Davinson, T.; Bruno, C. G.; Griffin, C. J.; Kahl, D.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland, Email: oscar.hall@ed.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000647421500016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4819
Permanent link to this record
 

 
Author Domingo-Pardo, C.; Goel, N.; Engert, T.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Didierjean, F.; Duchene, G.; Sigward, M.H.
Title A novel gamma-ray imaging method for the pulse-shape characterization of position sensitive semiconductor radiation detectors Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A
Volume 643 Issue 1 Pages 79-88
Keywords gamma-detector; Pulse shape analysis; Tracking; Semiconductor
Abstract A new technique for the pulse-shape characterization of gamma-ray position sensitive germanium detectors is presented. This method combines the pulse shape comparison scan (PSCS) principle with a gamma-ray imaging technique. The latter is provided by a supplementary, high performance, position sensitive gamma-ray scintillator detector. We describe the basic aspects of the method and we show measurements made for the study of pulse-shapes in a non-segmented planar HPGe detector. A preliminary application of the PSCS is carried out, although a more detailed investigation is being performed with highly segmented position sensitive detectors.
Address [Domingo-Pardo, C; Goel, N; Engert, T; Gerl, J; Kojouharov, I; Schaffner, H] GSI Helmholtzzentnim Schwenonenforsch mbH, D-64291 Darmstadt, Germany, Email: cesar.domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000292442700014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 694
Permanent link to this record
 

 
Author AGATA Collaboration (Akkoyun, S. et al); Algora, A.; Barrientos, D.; Domingo-Pardo, C.; Egea, F.J.; Gadea, A.; Huyuk, T.; Kaci, M.; Mendez, V.; Rubio, B.; Salt, J.; Tain, J.L.
Title AGATA-Advanced GAmma Tracking Array Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A
Volume 668 Issue Pages 26-58
Keywords AGATA; gamma-Ray spectroscopy; gamma-Ray tracking; HPGe detectors; Digital signal processing; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulations
Abstract The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
Address [Boston, A. J.; Boston, H. C.; Colosimo, S.; Cooper, R. J.; Cresswell, J. R.; Dimmock, M. R.; Filmer, F.; Grint, A. N.; Harkness, L. J.; Judson, D. S.; Mather, A. R.; Moon, S.; Nelson, L.; Nolan, P. J.; Norman, M.; Oxley, D. C.; Rigby, S.; Sampson, J.; Scraggs, D. P.; Seddon, D.; Slee, M.; Stanios, T.; Thornhill, J.; Unsworth, C.; Wells, D.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England, Email: a.j.boston@liverpool.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000300864200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 923
Permanent link to this record
 

 
Author Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Tain, J.L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; Gonzalez-Romero, E.; Heil, M.; Jordan, D.; Kappeler, F.; Lampoudis, C.; Martinez, T.; Massimi, C.; Plag, R.
Title Monte Carlo simulation of the n_TOF Total Absorption Calorimeter Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A
Volume 671 Issue Pages 108-117
Keywords Monte Carlo simulation; Geant4; Neutron cross-sections; Time-of-flight; Neutron capture
Abstract The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.
Address [Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Gonzalez-Romero, E.; Martinez, T.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain, Email: carlos.guerrero@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000301474600013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 973
Permanent link to this record
 

 
Author Domingo-Pardo, C.
Title A new technique for 3D gamma-ray imaging: Conceptual study of a 3D camera Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A
Volume 675 Issue Pages 123-132
Keywords Gamma-ray detector; Three dimensional gamma-ray imaging; Compton camera; Gamma camera
Abstract A novel technique for 3D gamma-ray imaging is presented. This method combines the positron annihilation Compton scattering imaging technique with a supplementary position sensitive detector, which registers gamma-rays scattered in the object at angles of about 90 degrees. The 3D coordinates of the scattering location can be determined rather accurately by applying the Compton principle. This method requires access to the object from two orthogonal sides and allows one to achieve a position resolution of few mm in all three space coordinates. A feasibility study for a 3D camera is presented based on Monte Carlo calculations.
Address Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000302973600019 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 989
Permanent link to this record
 

 
Author AGATA Collaboration; Domingo-Pardo, C.; Bazzacco, D.; Doornenbal, P.; Farnea, E.; Gadea, A.; Gerl, J.; Wollersheim, H.J.
Title Conceptual design and performance study for the first implementation of AGATA at the in-flight RIB facility of GSI Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A
Volume 694 Issue Pages 297-312
Keywords gamma-Ray spectroscopy; Tracking; Monte Carlo
Abstract The main objective of the Advanced GAmma Tracking Array (AGATA) is the investigation of the structure of exotic nuclei at the new generation of RIB facilities. As part of the preparatory phase for FAIR-NUSTAR, AGATA is going to be installed at the FRS fragmentation facility of the GSI centre for an experimental campaign to be performed in 2012 and 2013. Owing to its gamma-ray tracking capabilities and the envisaged enhancement in resolving power, a series of in-flight gamma-ray spectroscopy experiments are being planned. The present work describes the conceptual design of this first implementation of AGATA at GSI-FRS, and provides information about the expected performance figures. According to the characteristics of each particular experiment, it is foreseen that the target-array distance is adjusted in order to achieve the optimum compromise between detection efficiency and energy resolution, or to cover an specific angular range of the emitted electromagnetic radiation. Thus, a comprehensive Monte Carlo study of the detection sensitivity in terms of photopeak efficiency, resolution and peak-to-total ratio, as a function of the target-array distance is presented. Several configurations have been investigated, and MC-calculations indicate that a remarkable enhancement in resolving power can be achieved when double-cluster AGATA detectors are developed and implemented. Several experimental effects are also investigated. This concerns the impact of passive materials between the target and the array, the angular distribution of the detection efficiency and the influence of target thickness effects and transition lifetimes in the attainable detection sensitivity. A short overview on half-life measurements via lineshape effects utilizing AGATA is also presented. (C) 2012 Elsevier B.V. All rights reserved.
Address [Domingo-Pardo, C.; Gadea, A.] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311020500041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1240
Permanent link to this record
 

 
Author Goel, N.; Domingo-Pardo, C.; Habermann, T.; Ameil, F.; Engert, T.; Gerl, J.; Kojouharov, I.; Maruhn, J.; Pietralla, N.; Schaffner, H.
Title Characterisation of a symmetric AGATA detector using the gamma-ray imaging scanning technique Type Journal Article
Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A
Volume 700 Issue Pages 10-21
Keywords AGATA; Pulse shape comparison (PSC); Pulse shape analysis (PSA)
Abstract The imaging scanning technique for the characterisation of large volume, highly segmented, HPGe detectors is demonstrated by comparing the measured spatial response of a symmetric AGATA crystal versus the theoretical calculations obtained with the Multi-Geometry Simulation (MGS) code. The signal rise-times measured as a function of the gamma-ray interaction positions, in both coaxial and planar regions of the detection volume, are presented and confronted with the expected behaviour obtained via MGS. The transition in charge carrier transport behaviour as a function of the depth is studied for the region of the complex electric field. In general, a fairly good agreement between theory and experiment is obtained. Only systematic deviations between simulation and measurement are observed in the critical front part of the AGATA detector. They may be ascribed to a non-linear impurity concentration profile of the germanium crystal.
Address [Goel, N.; Domingo-Pardo, C.; Habermann, T.; Ameil, F.; Engert, T.; Gerl, J.; Kojouharov, I.; Schaffner, H.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany, Email: n.goel@gsi.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000312811400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1283
Permanent link to this record