NEXT Collaboration(Byrnes, N. K. et al), Carcel, S., Carrion, J. V., Lopez, F., Lopez-March, N., Martin-Albo, J., et al. (2023). NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout. J. Instrum., 18(8), P08006–33pp.
Abstract: The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Momentum scale calibration of the LHCb spectrometer. J. Instrum., 19(2), P02008–21pp.
Abstract: For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/qi -> mu+mu- and B+ -> J/qiK+ decays and leads to a relative accuracy of 3 x 10-4 on the momentum scale.
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cantero, J., et al. (2024). The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3. J. Instrum., 19(5), P05063–227pp.
Abstract: The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of L = 2 x 10(34) cm(-2) s(-1) was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of L = 2x10(34) cm(-2) s(-1) , with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.
|
Debevc, J., Franks, M., Hiti, B., Kraemer, U., Kramberger, G., Mandic, I., et al. (2024). Measurements of time resolution of the RD50-MPW2 DMAPS prototype using TCT and 90Sr. J. Instrum., 19(5), P05068–17pp.
Abstract: Results in this paper present an in-depth study of time resolution for active pixels of the RD50-MPW2 prototype CMOS particle detector. Measurement techniques employed include Backside- and Edge-TCT configurations, in addition to electrons from a 90 Sr source. A sample irradiated to 5 <middle dot> 10 14 n eq / cm 2 was used to study the effect of radiation damage. Timing performance was evaluated for the entire pixel matrix and with positional sensitivity within individual pixels as a function of the deposited charge. Time resolution obtained with TCT is seen to be uniform throughout the pixel's central region with approx. 220 ps at 12 ke – of deposited charge, degrading at the edges and lower values of deposited charge. 90 Sr measurements show a slightly worse time resolution as a result of delayed events coming from the peripheral areas of the pixel.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2024). Sensor response and radiation damage effects for 3D pixels in the ATLAS IBL Detector. J. Instrum., 19(10), P10008–40pp.
Abstract: Pixel sensors in 3D technology equip the outer ends of the staves of the Insertable B Layer (IBL), the innermost layer of the ATLAS Pixel Detector, which was installed before the start of LHC Run 2 in 2015. 3D pixel sensors are expected to exhibit more tolerance to radiation damage and are the technology of choice for the innermost layer in the ATLAS tracker upgrade for the HL-LHC programme. While the LHC has delivered an integrated luminosity of similar or equal to 235 fb(-1) since the start of Run 2, the 3D sensors have received a non-ionising energy deposition corresponding to a fluence of similar or equal to 8.5 x 10(14) 1MeV neutron-equivalent cm(-2) averaged over the sensor area. This paper presents results of measurements of the 3D pixel sensors' response during Run 2 and the first two years of Run 3, with predictions of its evolution until the end of Run 3 in 2025. Data are compared with radiation damage simulations, based on detailed maps of the electric field in the Si substrate, at various fluence levels and bias voltage values. These results illustrate the potential of 3D technology for pixel applications in high-radiation environments.
|
Salami, R. et al, Lacasta, C., Lopez, H., Platero, V., Solaz, C., & Soldevila, U. (2025). Quality concerns caused by quality control – deformation of silicon strip detector modules in thermal cycling tests. J. Instrum., 20(3), P03004–17pp.
Abstract: The ATLAS experiment at the Large Hadron Collider (LHC) is currently preparing to replace its present Inner Detector (ID) with the upgraded, all-silicon Inner Tracker (ITk) for its High-Luminosity upgrade (HL-LHC). The ITk will consist of a central pixel tracker and the outer strip tracker, consisting of about 19,000 strip detector modules. Each strip module is assembled from up to two sensors, and up to five flexes (depending on its geometry) in a series of gluing, wirebonding and quality control steps. During detector operation, modules will be cooled down to temperatures of about -35 degrees C (corresponding to the temperature of the support structures on which they will be mounted) after being initially assembled and stored at room temperature. In order to ensure compatibility with the detector's operating temperature range, modules are subjected to thermal cycling as part of their quality control process. Ten cycles between -35 degrees C and +40 degrees C are performed for each module, with full electrical characterisation tests at each high and low temperature point. As part of an investigation into the stress experienced by modules during cooling, it was observed that modules generally showed a change in module shape before and after thermal cycling. This paper presents a summary of the discovery and understanding of the observed changes, connecting them with excess module stress, as well as the resulting modifications to the module thermal cycling procedure.
|
Kalliokoski, M., Levi, G., Maulik, A., Ostrovskiy, I., Patrizii, L., Pinfold, J., et al. (2025). Calibration of Solid State Nuclear Track Detectors for rare event searches. J. Instrum., 20(3), P03014–12pp.
Abstract: The calibration of the CR39 (R) and Makrofol (R) Nuclear Track Detectors of the MoEDAL experiment at the CERN-LHC was performed by exposing stacks of detector foils to heavy ion beams with energies ranging from 340 MeV/nucleon to 150 GeV/nucleon. After chemical etching, the base areas and lengths of etch-pit cones were measured using automatic and manual optical microscopes. The response of the detectors as measured by the ratio of the track-etching rate over the bulk-etching rate, was determined over a range extending from their threshold at Z/beta 7 and 50 for CR39 and Makrofol, respectively, up to Z/beta 92.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Expected tracking performance of the ATLAS Inner Tracker at the High-Luminosity LHC. J. Instrum., 20(2), P02018–49pp.
Abstract: The high-luminosity phase of LHC operations (HL-LHC), will feature a large increase in simultaneous proton-proton interactions per bunch crossing up to 200, compared with a typical leveling target of 64 in Run 3. Such an increase will create a very challenging environment in which to perform charged particle trajectory reconstruction, a task crucial for the success of the ATLAS physics program, and will exceed the capabilities of the current ATLAS Inner Detector (ID). A new all-silicon Inner Tracker (ITk) will replace the current ID in time for the start of the HL-LHC. To ensure successful use of the ITk capabilities in Run 4 and beyond, the ATLAS tracking software has been successfully adapted to achieve state-of-the-art track reconstruction in challenging high-luminosity conditions with the ITk detector. This paper presents the expected tracking performance of the ATLAS ITk based on the latest available developments since the ITk technical design reports.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). LHCb detector performance. Int. J. Mod. Phys. A, 30(7), 1530022–73pp.
Abstract: The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.
|
Bouhova-Thacker, E., Kostyukhin, V., Koffas, T., Liebig, W., Limper, M., Piacquadio, G. N., et al. (2010). Expected Performance of Vertex Reconstruction in the ATLAS Experiment at the LHC. IEEE Trans. Nucl. Sci., 57(2), 760–767.
Abstract: In the harsh environment of the Large Hadron Collider at CERN (design luminosity of 10(34) cm(-2) s(-1)) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper is the expected performance of the vertex reconstruction used in the ATLAS experiment. The algorithms for the reconstruction of primary and secondary vertices as well as for finding photon conversions and vertex reconstruction in jets are described. The implementation of vertex algorithms which follows a very modular design based on object-oriented C++ is presented. A user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.
|