|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Modelling radiation damage to pixel sensors in the ATLAS detector. J. Instrum., 14, P06012–52pp.
Abstract: Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 10(15) 1 MeV n(eq)/cm(2), while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (<= 10(15) 1 MeV n(eq)/cm(2)).
|
|
|
Babeluk, M. et al, Lacasta, C., Marinas, C., Mazorra de Cos, J., & Vobbilisetti, V. (2024). The OBELIX chip for the Belle II VTX upgrade. Nucl. Instrum. Methods Phys. Res. A, 1067, 169659–3pp.
Abstract: The OBELIX depleted monolithic active CMOS pixel sensor (DMAPS) is currently developed for the upgrade of the vertex detector of the Belle II experiment located at Tsukuba/Japan. The pixel matrix of OBELIX is inherited from the TJ-Monopix2 chip, but the periphery includes additional features to improve performance and allow the integration into a larger detector system. The new features include a trigger unit to process trigger signals, a precision timing module and a possibility to transmit low granularity hit information with low latency to contribute to the Belle II trigger. Additionally, low dropout voltage regulators and an ADC to monitor power consumption and substrate temperature is developed. This paper will focus on the trigger contribution capabilities of the OBELIX chip.
|
|
|
Belle II VTX Collaboration(Babeluk, M. et al)., Marinas, C., & Mazorra de Cos, J. (2024). The DMAPS upgrade of the Belle II vertex detector. Nucl. Instrum. Methods Phys. Res. A, 1064, 169428–5pp.
Abstract: The Belle II experiment at KEK in Japan considers an upgrade for the vertex detector system in line with the accelerator upgrade for higher luminosity at long shutdown 2 planned for 2028. One proposal for the upgrade of the vertex detector called VTX aims to improve background robustness and reduce occupancy using small and fast pixels. VTX accommodates the OBELIX depleted monolithic active CMOS pixel sensor (DMAPS) on all five proposed layers. OBELIX is specifically developed for the VTX application and based on the TJ-Monopix2 chip initially developed to meet the requirements of the outer layers of the ATLAS inner tracker (ITk). This paper will review recent tests of the TJ-Monopix2 chip as well as various design aspects of the OBELIX-1 chip currently under development.
|
|
|
CMS and CALICE Collaborations(Acar, B. et al), & Irles, A. (2023). Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c. J. Instrum., 18(8), P08014–32pp.
Abstract: The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly read out by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.
|
|
|
Hiti, B., Cindro, V., Gorisek, A., Franks, M., Marco-Hernandez, R., Kramberger, G., et al. (2021). Characterisation of analogue front end and time walk in CMOS active pixel sensor. J. Instrum., 16(12), P12020–12pp.
Abstract: In this work we investigated a method to determine time walk in an active silicon pixel sensor prototype using Edge-TCT with infrared laser charge injection. Samples were investigated before and after neutron irradiation to 5 . 10(14) n(eq)/cm(2). Threshold, noise and calibration of the analogue front end were determined with external charge injection. A spatially sensitive measurement of collected charge and time walk was carried out with Edge-TCT, showing a uniform charge collection and output delay in pixel centre. On pixel edges charge sharing was observed due to finite beam width resulting in smaller signals and larger output delay. Time walk below 25 ns was observed for charge above 2000 e(-) at a threshold above the noise level. Time walk measurement with external charge injection yielded identical results.
|
|