|
Gonzalez-Iglesias, D., Aksoy, A., Esperante, D., Gimeno, B., Latina, A., Boronat, M., et al. (2021). X-band RF photoinjector design for the CompactLight project. Nucl. Instrum. Methods Phys. Res. A, 1014, 165709–10pp.
Abstract: RF photoinjectors have been under development for several decades to provide the high-brightness electron beams required for X-ray Free Electron Lasers. This paper proposes a photoinjector design that meets the Horizon 2020 CompactLight design study requirements. It consists of a 5.6-cell, X-band (12 GHz) RF gun, an emittance-compensating solenoid and two X-band traveling-wave structures that accelerate the beam out of the space-charge-dominated regime. The RF gun is intended to operate with a cathode gradient of 200 MV/m, and the TW structures at a gradient of 65 MV/m. The shape of the gun cavity cells was optimized to reduce the peak electric surface field. An assessment of the gun RF breakdown likelihood is presented as is a multipacting analysis for the gun coaxial coupler. RF pulse heating on the gun inner surfaces is also evaluated and beam dynamics simulations of the 100 MeV photoinjector are summarized.
|
|