|
Real, D., & Calvo, D. (2024). Low-Resource Time-to-Digital Converters for Field Programmable Gate Arrays: A Review. Sensors, 24(17), 5512–15pp.
Abstract: A fundamental aspect in the evolution of Time-to-Digital Converters (TDCs) implemented within Field-Programmable Gate Arrays (FPGAs), given the increasing demand for detection channels, is the optimization of resource utilization. This study reviews the principal methodologies employed for implementing low-resource TDCs in FPGAs. It outlines the foundational architectures and interpolation techniques utilized to bolster TDC performances without unduly burdening resource consumption. Low-resource Tapped Delay Line, Vernier Ring Oscillator, and Multi-Phase Shift Counter TDCs, including the use of SerDes, are reviewed. Additionally, novel low-resource architectures are scrutinized, including Counter Gray Oscillator TDCs and interpolation expansions using Process-Voltage-Temperature stable IODELAYs. Furthermore, the advantages and limitations of each approach are critically assessed, with particular emphasis on resolution, precision, non-linearities, and especially resource utilization. A comprehensive summary table encapsulating existing works on low-resource TDCs is provided, offering a comprehensive overview of the advancements in the field.
|
|
|
Real, D., Calvo, D., Zornoza, J. D., Manzaneda, M., Gozzini, R., Ricolfe-Viala, C., et al. (2024). Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection. Sensors, 24(7), 2084–12pp.
Abstract: Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.
|
|